Digit-polynomial construction of substitutions over Galois ring
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 17-19.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new way for constructing substitutions over Galois ring is considered. The way uses functions with variational-digit polynomiality. The class of these functions over various rings was earlier defined in the author's works. The peculiarity of this class is that it contains a class of polynomial functions and, under certain conditions, does not coincide with it. The criterions for the bijectivity of a polynomial vector-function and for a polynomial function to be a substitution are generalized. The presented results make it possible, in particular, to construct non-polynomial $n$-quasigroups.
Mots-clés : substitutions
Keywords: $n$-quasigroups, bijective polynomial vector-function, functions with variational-digit polynomiality, digit set, Galois ring.
@article{PDMA_2017_10_a4,
     author = {M. V. Zaets},
     title = {Digit-polynomial construction of substitutions over {Galois} ring},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {17--19},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a4/}
}
TY  - JOUR
AU  - M. V. Zaets
TI  - Digit-polynomial construction of substitutions over Galois ring
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 17
EP  - 19
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a4/
LA  - ru
ID  - PDMA_2017_10_a4
ER  - 
%0 Journal Article
%A M. V. Zaets
%T Digit-polynomial construction of substitutions over Galois ring
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 17-19
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a4/
%G ru
%F PDMA_2017_10_a4
M. V. Zaets. Digit-polynomial construction of substitutions over Galois ring. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 17-19. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a4/

[1] Elizarov V. P., Konechnye koltsa, Gelios-ARV, M., 2006

[2] Zaets M. V., “O klasse variatsionno-koordinatno polinomialnykh funktsii nad primarnym koltsom vychetov”, Prikladnaya diskretnaya matematika, 2014, no. 3, 12–27

[3] Zaets M. V., Nikonov V. G., Shishkov A. B., “Klass funktsii s variatsionno-koordinatnoi polinomialnostyu nad koltsom $\mathbb Z_{2^m}$ i ego obobschenie”, Matem. voprosy kriptografii, 4:3 (2013), 21–47

[4] Zaets M. V., “Klassy polinomialnykh i variatsionno-koordinatno polinomialnykh funktsii nad koltsom Galua”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 13–15

[5] Lausch H., Nobauer W., Algebra of polynomials, North-Holl. Publ. Co, Amsterdam, 1973 | MR | Zbl

[6] Zaets M. V., “Postroenie podstanovok s ispolzovaniem variatsionno-koordinatno polinomialnykh funktsii nad primarnym koltsom vychetov”, Matem. voprosy kriptografii, 6:1 (2015), 5–32 | MR

[7] Nechaev A. A., “Polinomialnye preobrazovaniya konechnykh kommutativnykh lokalnykh kolets glavnykh idealov”, Matem. zametki, 27:6 (1980), 885–897 | MR | Zbl

[8] Belousov V. D., $n$-Arnye kvazigruppy, Shtiintsa, Kishinev, 1972 | MR