On characteristics of local primitive matrices and digraphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 96-99
Cet article a éte moissonné depuis la source Math-Net.Ru
For local primitive $n$-vertex digraphs and matrices of order $n$, the following new characteristics are introduced: a matex is defined as a matrix $(\gamma_{i,j})$ of order $n$, where $\gamma_{i,j}=(i,j)-\exp\Gamma$, $1\leq i,j\leq n$; $k,r$-exporadius $\operatorname{exrd}_{k,r}\Gamma$ is defined as $\min_{I\times J\colon|I|=k,\ |J|=r}\gamma_{I,J}$, where $\gamma_{I,J}=\max_{(i,j)\in I\times J}\gamma_{i,j}$; $k,r$-expocenter is defined as a set $I\times J$, where $|I|=k$, $|J|=r$, $\gamma_{I,J}=\operatorname{exrd}_{k,r}\Gamma$. An approach to build the perfect $s$-boxes of order $k\times r$ using introduced characteristics is proposed. This approach is based on iterations of $n$-dimensional Boolean vectors set transformations with $n>\max(k,r)$. An exemplification of the function construction for perfect $s$-boxes of order $k\times r$ is presented.
Keywords:
local primitive matrix (digraph), local exponent.
@article{PDMA_2017_10_a38,
author = {V. M. Fomichev},
title = {On characteristics of local primitive matrices and digraphs},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {96--99},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a38/}
}
V. M. Fomichev. On characteristics of local primitive matrices and digraphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 96-99. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a38/
[1] Kyazhin S. N., Fomichev V. M., “Lokalnaya primitivnost grafov i neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2014, no. 3(25), 68–80
[2] Fomichev V. M., Kyazhin S. N., “Lokalnaya primitivnost matrits i grafov”, Diskret. analiz i issled. operatsii, 24:1 (2017), 97–119 | MR | Zbl
[3] Fomichev V. M., Zadorozhnyi D. I., Koreneva A. M., Lolich D. M., Yuzbashev A. V., “Ob algoritmicheskoi realizatsii $s$-boksov”, Problemy informatsionnoi bezopasnosti. Kompyuternye sistemy, 2017 (to appear)