On explicit constructions for solving the problem “A secret sharing”
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 68-70
Cet article a éte moissonné depuis la source Math-Net.Ru
“A secret sharing” problem was suggested to the participants of the second round competition in cryptography NSUCRYPTO-2015. The problem is to construct a subset $M\subset\mathbb F_2^n$ satisfying the following conditions: 1) any $u\in M$ can be represented as $u=x\oplus y\oplus z$, where $x,y,z$ are different elements of $\overline M=\mathbb F_2^n\setminus M$; 2) $x\oplus y\oplus z\in M$ for all different $x,y,z\in\overline M$. The paper presents some approaches to solving this problem. In particular, for even $n$, an explicit construction of the required set $M$ on the basis of a cubic parabola is proposed.
Mots-clés :
NSUCRYPTO-2015, parabola curve.
Keywords: Galois field, secret sharing
Keywords: Galois field, secret sharing
@article{PDMA_2017_10_a28,
author = {K. L. Geut and K. A. Kirienko and P. O. Sadkov and R. I. Taskin and S. S. Titov},
title = {On explicit constructions for solving the problem {{\textquotedblleft}A~secret} sharing{\textquotedblright}},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {68--70},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/}
}
TY - JOUR AU - K. L. Geut AU - K. A. Kirienko AU - P. O. Sadkov AU - R. I. Taskin AU - S. S. Titov TI - On explicit constructions for solving the problem “A secret sharing” JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 68 EP - 70 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/ LA - ru ID - PDMA_2017_10_a28 ER -
%0 Journal Article %A K. L. Geut %A K. A. Kirienko %A P. O. Sadkov %A R. I. Taskin %A S. S. Titov %T On explicit constructions for solving the problem “A secret sharing” %J Prikladnaya Diskretnaya Matematika. Supplement %D 2017 %P 68-70 %N 10 %U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/ %G ru %F PDMA_2017_10_a28
K. L. Geut; K. A. Kirienko; P. O. Sadkov; R. I. Taskin; S. S. Titov. On explicit constructions for solving the problem “A secret sharing”. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 68-70. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/
[1] International Students' Olympiad in Cryptography NSUCRYPTO, http://nsucrypto.nsu.ru
[2] Agievich S., Gorodilova A., Idrisova V., et al., “Mathematical problems of the Second International Students' Olympiad in Cryptography”, Cryptologia, 2017 | DOI
[3] Bolotov A. A., Gashkov S. B., Frolov A. B., Elementarnoe vvedenie v ellipticheskuyu kriptografiyu: algebraicheskie i algoritmicheskie osnovy, KomKniga, M., 2006
[4] Bolotov A. A., Gashkov S. B., Frolov A. B., Elementarnoe vvedenie v ellipticheskuyu kriptografiyu, Protokoly kriptografii na ellipticheskikh krivykh, KomKniga, M., 2006
[5] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | MR