On explicit constructions for solving the problem ``A~secret sharing''
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 68-70.

Voir la notice de l'article provenant de la source Math-Net.Ru

“A secret sharing” problem was suggested to the participants of the second round competition in cryptography NSUCRYPTO-2015. The problem is to construct a subset $M\subset\mathbb F_2^n$ satisfying the following conditions: 1) any $u\in M$ can be represented as $u=x\oplus y\oplus z$, where $x,y,z$ are different elements of $\overline M=\mathbb F_2^n\setminus M$; 2) $x\oplus y\oplus z\in M$ for all different $x,y,z\in\overline M$. The paper presents some approaches to solving this problem. In particular, for even $n$, an explicit construction of the required set $M$ on the basis of a cubic parabola is proposed.
Mots-clés : NSUCRYPTO-2015, parabola curve.
Keywords: Galois field, secret sharing
@article{PDMA_2017_10_a28,
     author = {K. L. Geut and K. A. Kirienko and P. O. Sadkov and R. I. Taskin and S. S. Titov},
     title = {On explicit constructions for solving the problem {``A~secret} sharing''},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {68--70},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/}
}
TY  - JOUR
AU  - K. L. Geut
AU  - K. A. Kirienko
AU  - P. O. Sadkov
AU  - R. I. Taskin
AU  - S. S. Titov
TI  - On explicit constructions for solving the problem ``A~secret sharing''
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 68
EP  - 70
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/
LA  - ru
ID  - PDMA_2017_10_a28
ER  - 
%0 Journal Article
%A K. L. Geut
%A K. A. Kirienko
%A P. O. Sadkov
%A R. I. Taskin
%A S. S. Titov
%T On explicit constructions for solving the problem ``A~secret sharing''
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 68-70
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/
%G ru
%F PDMA_2017_10_a28
K. L. Geut; K. A. Kirienko; P. O. Sadkov; R. I. Taskin; S. S. Titov. On explicit constructions for solving the problem ``A~secret sharing''. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 68-70. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a28/

[1] International Students' Olympiad in Cryptography NSUCRYPTO, http://nsucrypto.nsu.ru

[2] Agievich S., Gorodilova A., Idrisova V., et al., “Mathematical problems of the Second International Students' Olympiad in Cryptography”, Cryptologia, 2017 | DOI

[3] Bolotov A. A., Gashkov S. B., Frolov A. B., Elementarnoe vvedenie v ellipticheskuyu kriptografiyu: algebraicheskie i algoritmicheskie osnovy, KomKniga, M., 2006

[4] Bolotov A. A., Gashkov S. B., Frolov A. B., Elementarnoe vvedenie v ellipticheskuyu kriptografiyu, Protokoly kriptografii na ellipticheskikh krivykh, KomKniga, M., 2006

[5] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | MR