The Reed--Muller code square and equivalence classes of McEliece--Sidelnikov cryptosystem private keys
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 66-68.

Voir la notice de l'article provenant de la source Math-Net.Ru

Equivalence classes of McEliece–Sidelnikov cryptosystem private keys are studied in the work. The structure of the classes is described in the case, when the square of the code with the generator matrix $(R|HR)$, where $R$ is a generator matrix of the Reed–Muller code $\operatorname{RM}(r,m)$ of order $r$ and length $2^m$, equals the Cartesian square of the code of order $2r$ and the same length. In this case, there exists a bijection between an equivalence class and the Cartesian square of automorphism group of the code $\operatorname{RM}(r,m)$. Moreover, it is shown that the ratio of matrices $H$ causing other cases approaches zero when the code dimension approaches infinity.
Keywords: McEliece–Sidelnikov cryptosystem, Reed–Muller code, code square
Mots-clés : equivalence classes.
@article{PDMA_2017_10_a27,
     author = {V. V. Vysotskaya},
     title = {The {Reed--Muller} code square and equivalence classes of {McEliece--Sidelnikov} cryptosystem private keys},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {66--68},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a27/}
}
TY  - JOUR
AU  - V. V. Vysotskaya
TI  - The Reed--Muller code square and equivalence classes of McEliece--Sidelnikov cryptosystem private keys
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 66
EP  - 68
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a27/
LA  - ru
ID  - PDMA_2017_10_a27
ER  - 
%0 Journal Article
%A V. V. Vysotskaya
%T The Reed--Muller code square and equivalence classes of McEliece--Sidelnikov cryptosystem private keys
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 66-68
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a27/
%G ru
%F PDMA_2017_10_a27
V. V. Vysotskaya. The Reed--Muller code square and equivalence classes of McEliece--Sidelnikov cryptosystem private keys. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 66-68. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a27/

[1] Sidelnikov V. M., “Otkrytoe shifrovanie na osnove dvoichnykh kodov Rida–Mallera”, Diskretnaya matematika, 6:2 (1994), 3–20 | MR | Zbl

[2] McEliece R. J., “A public-key cryptosystem based on algebraic coding theory”, DSN Progress Report, 42–44 (1978), 114–116

[3] Sidelnikov V. M., Shestakov S. O., “O sisteme shifrovaniya, postroennoi na osnove obobschennykh kodov Rida–Solomona”, Diskretnaya matematika, 4:3 (1992), 57–63 | MR | Zbl

[4] Chizhov I. V., Prostranstvo klyuchei kriptosistemy Mak-Elisa–Sidelnikova, Dis. $\dots$ kand. fiz.-mat. nauk, MGU, M., 2010