On reducing the order of linear recurrence equations with constant coefficients
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 12-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper deals with the relations that define non-linear recursion of the first order for a general linear recurrence relation of the second order with constant coefficients. It is proved that the linear recurrence relation of second order with constant coefficients and different roots is reduced to a non-trivial homogeneous relation of the first order iff the product of some integer degrees of these roots equals 1.
Keywords: linear recurrence relation, nonlinear recurrence relation; Fibonacci numbers, difference equations.
@article{PDMA_2017_10_a2,
     author = {K. L. Geut and S. S. Titov},
     title = {On reducing the order of linear recurrence equations with constant coefficients},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {12--13},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a2/}
}
TY  - JOUR
AU  - K. L. Geut
AU  - S. S. Titov
TI  - On reducing the order of linear recurrence equations with constant coefficients
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 12
EP  - 13
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a2/
LA  - ru
ID  - PDMA_2017_10_a2
ER  - 
%0 Journal Article
%A K. L. Geut
%A S. S. Titov
%T On reducing the order of linear recurrence equations with constant coefficients
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 12-13
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a2/
%G ru
%F PDMA_2017_10_a2
K. L. Geut; S. S. Titov. On reducing the order of linear recurrence equations with constant coefficients. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 12-13. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a2/

[1] Ushakov V. N., “Egipetskie treugolniki i chisla Fibonachchi”, Imperiya matematiki, 2001, no. 11, 21–60

[2] Markov A. A., Ischislenie konechnykh raznostei, Tipografiya Aktsionernogo Yuzhno-Russkogo Obschestva Pechatnogo Dela, Odessa, 1910

[3] Gelfond A. O., Ischislenie konechnykh raznostei, Nauka, M., 1967 | MR

[4] Sidorov A. F., Shapeev V. P., Yanenko N. N., Metod differentsialnykh svyazei i ego prilozheniya v gazovoi dinamike, Nauka, Novosibirsk, 1984 | MR

[5] Geut K. L., Titov S. S., “O zadache postroeniya nelineinykh rekurrentnykh posledovatelnostei”, IV Mezhdistsiplinarnaya molodezhnaya nauchnaya konferentsiya UrO RAN “Informatsionnaya shkola uchenogo”, Ekaterinburg, 2013, 203–208

[6] Geut K. L., Titov S. S., “O postroenii nelineinykh rekurrentnykh sootnoshenii”, Trudy 46-i Vseros. molodezhnoi konf., UrO RAN, Ekaterinburg, 2015, 3–6