Lower bounds of dimension of linear codes for~CDMA
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 45-46.

Voir la notice de l'article provenant de la source Math-Net.Ru

A linear code of the length $2^n$ is called a saving property bent code (SPB-code) for a bent function $f$ if for any element $a$ of the code, $f(x\oplus a)$ is a bent function. For every bent function from Maiorana–McFarland class with $2n$ variables, there exists SPB-code of the dimension $2^{n+1}-1$. For every bent function with a linearity index $k$, there exists SPB-code of the dimension $2^{k+1}-1$.
Keywords: linear codes, bent functions
Mots-clés : constant-amplitude codes.
@article{PDMA_2017_10_a18,
     author = {N. S. Odinokikh},
     title = {Lower bounds of dimension of linear codes {for~CDMA}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {45--46},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a18/}
}
TY  - JOUR
AU  - N. S. Odinokikh
TI  - Lower bounds of dimension of linear codes for~CDMA
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 45
EP  - 46
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a18/
LA  - ru
ID  - PDMA_2017_10_a18
ER  - 
%0 Journal Article
%A N. S. Odinokikh
%T Lower bounds of dimension of linear codes for~CDMA
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 45-46
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a18/
%G ru
%F PDMA_2017_10_a18
N. S. Odinokikh. Lower bounds of dimension of linear codes for~CDMA. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 45-46. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a18/

[1] Pavlov A. V., “Bent-funktsii i lineinye kody v CDMA”, Prikladnaya diskretnaya matematika. Prilozhenie, 2010, no. 3, 95–97

[2] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl

[3] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Probl. peredachi inform., 33:1 (1997), 75–86 | MR | Zbl