Lower bounds of dimension of linear codes for CDMA
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 45-46
Cet article a éte moissonné depuis la source Math-Net.Ru
A linear code of the length $2^n$ is called a saving property bent code (SPB-code) for a bent function $f$ if for any element $a$ of the code, $f(x\oplus a)$ is a bent function. For every bent function from Maiorana–McFarland class with $2n$ variables, there exists SPB-code of the dimension $2^{n+1}-1$. For every bent function with a linearity index $k$, there exists SPB-code of the dimension $2^{k+1}-1$.
Keywords:
linear codes, bent functions
Mots-clés : constant-amplitude codes.
Mots-clés : constant-amplitude codes.
@article{PDMA_2017_10_a18,
author = {N. S. Odinokikh},
title = {Lower bounds of dimension of linear codes {for~CDMA}},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {45--46},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a18/}
}
N. S. Odinokikh. Lower bounds of dimension of linear codes for CDMA. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 45-46. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a18/
[1] Pavlov A. V., “Bent-funktsii i lineinye kody v CDMA”, Prikladnaya diskretnaya matematika. Prilozhenie, 2010, no. 3, 95–97
[2] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory Ser. A, 15:1 (1973), 1–10 | DOI | MR | Zbl
[3] Yaschenko V. V., “O kriterii rasprostraneniya dlya bulevykh funktsii i o bent-funktsiyakh”, Probl. peredachi inform., 33:1 (1997), 75–86 | MR | Zbl