Properties of coordinate functions for a~class of permutations on~$\mathbb F_2^n$
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 38-40.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the class $\mathcal F_n$ of permutations on $\mathbb F_2^n$ with coordinate functions depending on all variables, we consider the subclass $\mathcal K_n$, where each permutation is obtained from the identity by $n$ independent transpositions. For permutations in $\mathcal K_n$, some cryptographic properties of coordinate functions $f_i$ are given, namely, $\operatorname{deg}f_i=n-1$, non-linearity $N_{f_i}=2$, correlation immunity order $\operatorname{cor}(f_i)=0$, algebraic immunity $\operatorname{AI}(f_i)=2$. The cardinalities $|\mathcal K_n|$ for $n=3,\dots,6$ has been presented.
Keywords: vector Boolean functions, invertible functions, non-linearity, correlation immunity, algebraic immunity.
@article{PDMA_2017_10_a14,
     author = {L. A. Karpova and I. A. Pankratova},
     title = {Properties of coordinate functions for a~class of permutations on~$\mathbb F_2^n$},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {38--40},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a14/}
}
TY  - JOUR
AU  - L. A. Karpova
AU  - I. A. Pankratova
TI  - Properties of coordinate functions for a~class of permutations on~$\mathbb F_2^n$
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 38
EP  - 40
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a14/
LA  - ru
ID  - PDMA_2017_10_a14
ER  - 
%0 Journal Article
%A L. A. Karpova
%A I. A. Pankratova
%T Properties of coordinate functions for a~class of permutations on~$\mathbb F_2^n$
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 38-40
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a14/
%G ru
%F PDMA_2017_10_a14
L. A. Karpova; I. A. Pankratova. Properties of coordinate functions for a~class of permutations on~$\mathbb F_2^n$. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 38-40. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a14/

[1] Pankratova I. A., “Construction of invertible vectorial Boolean functions with coordinates depending on given number of variables”, Informatsionnye sistemy i tekhnologii, Materialy Mezhdunar. nauch. kongressa po informatike (Respublika Belarus, Minsk, 24–27 okt. 2016), BGU, Minsk, 2016, 519–521

[2] Tarannikov Yu. V., “O korrelyatsionno-immunnykh i ustoichivykh bulevykh funktsiyakh”, Matem. voprosy kibernetiki, 11, 2002, 91–148 | MR | Zbl

[3] Lobanov M. S., “Tochnoe sootnoshenie mezhdu nelineinostyu i algebraicheskoi immunnostyu”, Diskretnaya matematika, 18:3 (2006), 152–159 | DOI | MR | Zbl

[4] Agibalov G. P., “SIBCiphers – simmetrichnye iterativnye blochnye shifry iz bulevykh funktsii s klyuchevymi argumentami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 43–48

[5] Agibalov G. P., “Kriptoavtomaty s funktsionalnymi klyuchami”, Prikladnaya diskretnaya matematika, 2017, no. 36, 59–72

[6] Pankratova I. A., “Ob obratimosti vektornykh bulevykh funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 35–37