On connection between affine splitting of a~Boolean function and its algebraic, combinatorial and cryptographic properties
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 33-34.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, the following results are obtained: 1) for an affine splitting of a Boolean function – an upper bound of algebraic degree; 2) for a dual bent function – some sufficient conditions to be affine splitting, and 3) for any Boolean function with a non-trivial subspace of the linear structures – an upper bound of nonlinearity. Besides, the following assertions are proved: 1) affine splitting is an invariant of complete affine group; 2) if a bent function is normal or weakly normal, then its dual function is normal or weakly normal respectively; 3) the coefficients of the incomplete Walsh–Hadamard transformation of a bent function and of its dual function are the same for zero values of variables; 4) a relation connecting the squares of the Walsh–Hadamard coefficients of a function over cosets of a subspace with the squares of the coefficients of the incomplete Walsh–Hadamard transformation of this function.
Keywords: Boolean functions, bent functions, affine splitting.
@article{PDMA_2017_10_a11,
     author = {A. A. Babueva},
     title = {On connection between affine splitting of {a~Boolean} function and its algebraic, combinatorial and cryptographic properties},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {33--34},
     publisher = {mathdoc},
     number = {10},
     year = {2017},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/}
}
TY  - JOUR
AU  - A. A. Babueva
TI  - On connection between affine splitting of a~Boolean function and its algebraic, combinatorial and cryptographic properties
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2017
SP  - 33
EP  - 34
IS  - 10
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/
LA  - ru
ID  - PDMA_2017_10_a11
ER  - 
%0 Journal Article
%A A. A. Babueva
%T On connection between affine splitting of a~Boolean function and its algebraic, combinatorial and cryptographic properties
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2017
%P 33-34
%N 10
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/
%G ru
%F PDMA_2017_10_a11
A. A. Babueva. On connection between affine splitting of a~Boolean function and its algebraic, combinatorial and cryptographic properties. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 33-34. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/

[1] Kolomeets N. A., Bent-funktsii, affinnye na podprostranstvakh, i ikh metricheskie svoistva, Dis. $\dots$ kand. fiz.-mat. nauk, Novosibirsk, 2014, 68 pp.

[2] Logachev O. A., Yashchenko V. V., Denisenko M. P., “Local affinity of Boolean mappings”, Boolean Functions in Cryptology and Information Security, NATO Science for Peace and Security Series – D: Information and Communication Security, 18, IOS Press, 2008, 148–172 | MR | Zbl