On connection between affine splitting of a Boolean function and its algebraic, combinatorial and cryptographic properties
Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 33-34
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, the following results are obtained: 1) for an affine splitting of a Boolean function – an upper bound of algebraic degree; 2) for a dual bent function – some sufficient conditions to be affine splitting, and 3) for any Boolean function with a non-trivial subspace of the linear structures – an upper bound of nonlinearity. Besides, the following assertions are proved: 1) affine splitting is an invariant of complete affine group; 2) if a bent function is normal or weakly normal, then its dual function is normal or weakly normal respectively; 3) the coefficients of the incomplete Walsh–Hadamard transformation of a bent function and of its dual function are the same for zero values of variables; 4) a relation connecting the squares of the Walsh–Hadamard coefficients of a function over cosets of a subspace with the squares of the coefficients of the incomplete Walsh–Hadamard transformation of this function.
Keywords:
Boolean functions, bent functions, affine splitting.
@article{PDMA_2017_10_a11,
author = {A. A. Babueva},
title = {On connection between affine splitting of {a~Boolean} function and its algebraic, combinatorial and cryptographic properties},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {33--34},
year = {2017},
number = {10},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/}
}
TY - JOUR AU - A. A. Babueva TI - On connection between affine splitting of a Boolean function and its algebraic, combinatorial and cryptographic properties JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2017 SP - 33 EP - 34 IS - 10 UR - http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/ LA - ru ID - PDMA_2017_10_a11 ER -
%0 Journal Article %A A. A. Babueva %T On connection between affine splitting of a Boolean function and its algebraic, combinatorial and cryptographic properties %J Prikladnaya Diskretnaya Matematika. Supplement %D 2017 %P 33-34 %N 10 %U http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/ %G ru %F PDMA_2017_10_a11
A. A. Babueva. On connection between affine splitting of a Boolean function and its algebraic, combinatorial and cryptographic properties. Prikladnaya Diskretnaya Matematika. Supplement, no. 10 (2017), pp. 33-34. http://geodesic.mathdoc.fr/item/PDMA_2017_10_a11/
[1] Kolomeets N. A., Bent-funktsii, affinnye na podprostranstvakh, i ikh metricheskie svoistva, Dis. $\dots$ kand. fiz.-mat. nauk, Novosibirsk, 2014, 68 pp.
[2] Logachev O. A., Yashchenko V. V., Denisenko M. P., “Local affinity of Boolean mappings”, Boolean Functions in Cryptology and Information Security, NATO Science for Peace and Security Series – D: Information and Communication Security, 18, IOS Press, 2008, 148–172 | MR | Zbl