On the Hamming distance between two bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 27-28.

Voir la notice de l'article provenant de la source Math-Net.Ru

This work is devoted to the Hamming distance between two bent functions. Using the construction of bent functions at the minimal distance, some possible values of the distance are obtained. All possible distances between two Maiorana–McFarland bent functions are described.
Keywords: Boolean functions, bent functions, Hamming distance.
@article{PDMA_2016_9_a9,
     author = {N. A. Kolomeec},
     title = {On the {Hamming} distance between two bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {27--28},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a9/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - On the Hamming distance between two bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 27
EP  - 28
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a9/
LA  - ru
ID  - PDMA_2016_9_a9
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T On the Hamming distance between two bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 27-28
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a9/
%G ru
%F PDMA_2016_9_a9
N. A. Kolomeec. On the Hamming distance between two bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 27-28. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a9/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N. N., Bent Functions, Results and Applications to Cryptography, Acad. Press Elsevier, 2015 | MR

[3] Tokareva N. N., “On the number of bent functions from iterative constructions: lower bounds and hypothesis”, Adv. Math. Commun., 5:4 (2011), 609–621 | DOI | MR | Zbl

[4] McFarland R. L., “A family of difference sets in non-cyclic groups”, J. Combin. Theory. Ser. A, 15 (1973), 1–10 | DOI | MR | Zbl

[5] Kasami T., Tokura N., “On the weight structure of Reed–Muller codes”, IEEE Trans. Inform. Theory, 16:6 (1970), 752–759 | DOI | MR | Zbl

[6] Potapov V. N., “Spektr moschnostei komponent korrelyatsionno-immunnykh funktsii, bent-funktsii, sovershennykh raskrasok i kodov”, Problemy peredachi informatsii, 48:1 (2012), 54–63 | MR | Zbl

[7] Kolomeets N. A., “Verkhnyaya otsenka chisla bent-funktsii na rasstoyanii $2^k$ ot proizvolnoi bent-funktsii ot $2k$ peremennykh”, Prikladnaya diskretnaya matematika, 2014, no. 3, 28–39