Functions with variative-coordinate polynomiality over group
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 24-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

A class of VCP-functions, that is, of functions with the variative-coordinate polynomiality over group, is defined. It is an extension of the class of VCP-functions over primary ring of residues. An algorithm for finding coordinates for group elements is presented. It is shown that the class of VCP-functions over $UT_n(\mathbb Z_p)$ does not coincide with the class of polynomial function. A formula for constructing the inverse of a bijective VCP-function over $UT_n(\mathbb Z_p)$ is proposed.
Keywords: functions over group, functions with variative-coordinate polynomiality, coordinate functions.
@article{PDMA_2016_9_a8,
     author = {A. I. Zueva and A. V. Karpov},
     title = {Functions with variative-coordinate polynomiality over group},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {24--27},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a8/}
}
TY  - JOUR
AU  - A. I. Zueva
AU  - A. V. Karpov
TI  - Functions with variative-coordinate polynomiality over group
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 24
EP  - 27
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a8/
LA  - ru
ID  - PDMA_2016_9_a8
ER  - 
%0 Journal Article
%A A. I. Zueva
%A A. V. Karpov
%T Functions with variative-coordinate polynomiality over group
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 24-27
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a8/
%G ru
%F PDMA_2016_9_a8
A. I. Zueva; A. V. Karpov. Functions with variative-coordinate polynomiality over group. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 24-27. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a8/

[1] Zaets M. V., “O klasse variatsionno-koordinatno-polinomialnykh funktsii nad primarnym koltsom vychetov”, Prikladnaya diskretnaya matematika, 2014, no. 3, 12–27

[2] Karpov A. V., “Obraschenie differentsiruemykh perestanovok nad gruppoi”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 30–32

[3] Anashin V. S., “Solvable groups with operators and commutative rings having transitive polynomials”, Algebra i Logika, 21:6 (1982), 627–646 | DOI | MR

[4] Menshov A. V., Asimptoticheskie svoistva ratsionalnykh mnozhestv i sistem uravnenii v svobodnykh abelevykh gruppakh i razreshimost regulyarnykh uravnenii v klasse nilpotentnykh grupp, Dis. $\dots$ kand. fiz.-mat. nauk, Omsk, 2014