Functions with variative-coordinate polynomiality over group
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 24-27
Cet article a éte moissonné depuis la source Math-Net.Ru
A class of VCP-functions, that is, of functions with the variative-coordinate polynomiality over group, is defined. It is an extension of the class of VCP-functions over primary ring of residues. An algorithm for finding coordinates for group elements is presented. It is shown that the class of VCP-functions over $UT_n(\mathbb Z_p)$ does not coincide with the class of polynomial function. A formula for constructing the inverse of a bijective VCP-function over $UT_n(\mathbb Z_p)$ is proposed.
Keywords:
functions over group, functions with variative-coordinate polynomiality, coordinate functions.
@article{PDMA_2016_9_a8,
author = {A. I. Zueva and A. V. Karpov},
title = {Functions with variative-coordinate polynomiality over group},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {24--27},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a8/}
}
A. I. Zueva; A. V. Karpov. Functions with variative-coordinate polynomiality over group. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 24-27. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a8/
[1] Zaets M. V., “O klasse variatsionno-koordinatno-polinomialnykh funktsii nad primarnym koltsom vychetov”, Prikladnaya diskretnaya matematika, 2014, no. 3, 12–27
[2] Karpov A. V., “Obraschenie differentsiruemykh perestanovok nad gruppoi”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 30–32
[3] Anashin V. S., “Solvable groups with operators and commutative rings having transitive polynomials”, Algebra i Logika, 21:6 (1982), 627–646 | DOI | MR
[4] Menshov A. V., Asimptoticheskie svoistva ratsionalnykh mnozhestv i sistem uravnenii v svobodnykh abelevykh gruppakh i razreshimost regulyarnykh uravnenii v klasse nilpotentnykh grupp, Dis. $\dots$ kand. fiz.-mat. nauk, Omsk, 2014