Refinement of lower bounds for the number of additional arcs in a~minimal vertex $1$-extension of oriented path
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 101-102.

Voir la notice de l'article provenant de la source Math-Net.Ru

Previously known result states that the minimal vertex $1$-extension of any nonhamiltonian path orientation with the number of vertices more than 4 contains at least 4 additional arcs. In this paper, this bound is significantly refined, and upper bound for the number of additional arcs is given.
Keywords: minimal vertex extension, fault-tolerance.
Mots-clés : path orientation
@article{PDMA_2016_9_a38,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {Refinement of lower bounds for the number of additional arcs in a~minimal vertex $1$-extension of oriented path},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {101--102},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a38/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - Refinement of lower bounds for the number of additional arcs in a~minimal vertex $1$-extension of oriented path
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 101
EP  - 102
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a38/
LA  - ru
ID  - PDMA_2016_9_a38
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T Refinement of lower bounds for the number of additional arcs in a~minimal vertex $1$-extension of oriented path
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 101-102
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a38/
%G ru
%F PDMA_2016_9_a38
M. B. Abrosimov; O. V. Modenova. Refinement of lower bounds for the number of additional arcs in a~minimal vertex $1$-extension of oriented path. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 101-102. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a38/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl

[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.

[3] Abrosimov M. B., “O slozhnosti nekotorykh zadach, svyazannykh s rasshireniyami grafov”, Matem. zametki, 88:5 (2010), 643–650 | DOI | MR | Zbl

[4] Abrosimov M. B., Modenova O. V., “Kharakterizatsiya orgrafov s malym chislom dopolnitelnykh dug minimalnogo vershinnogo 1-rasshireniya”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 13:2 (2013), 3–9 | Zbl

[5] Abrosimov M. B., Modenova O. V., “Kharakterizatsiya orgrafov s tremya dopolnitelnymi dugami v minimalnom vershinnom 1-rasshirenii”, Prikladnaya diskretnaya matematika, 2013, no. 3, 68–75