Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2016_9_a3, author = {S. A. Kuzmin}, title = {On a~sufficient condition for impossibility to reduce the period of the high order binary digit position sequences over primary rings}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {12--14}, publisher = {mathdoc}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a3/} }
TY - JOUR AU - S. A. Kuzmin TI - On a~sufficient condition for impossibility to reduce the period of the high order binary digit position sequences over primary rings JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 12 EP - 14 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a3/ LA - ru ID - PDMA_2016_9_a3 ER -
%0 Journal Article %A S. A. Kuzmin %T On a~sufficient condition for impossibility to reduce the period of the high order binary digit position sequences over primary rings %J Prikladnaya Diskretnaya Matematika. Supplement %D 2016 %P 12-14 %N 9 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a3/ %G ru %F PDMA_2016_9_a3
S. A. Kuzmin. On a~sufficient condition for impossibility to reduce the period of the high order binary digit position sequences over primary rings. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 12-14. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a3/
[1] Sachkov V. N., Gorchinskii Yu. N., Zubkov A. N., Yablonskii S .V., Trudy po diskretnoi matematike, v. 1, TVP, M., 1997, 280 pp. | MR
[2] Kuzmin A. S., Marshalko G. B., Nechaev A. A., “Vosstanovlenie lineinoi rekurrentnoi posledovatelnosti nad primarnym koltsom vychetov po eë uslozhneniyu”, Matematicheskie voprosy kriptografii, 1:2 (2010), 31–56
[3] Kuzmin A. S., “O periodakh razryadov v $r$-ichnoi sisteme schisleniya znakov lineinykh rekurrentnykh posledovatelnostei nad konechnymi prostymi polyami”, Bezopasnost informatsionnykh tekhnologii, 1995, no. 4, 71–75
[4] Kuzmin S. A., “Periody razryadnykh posledovatelnostei lineinykh rekurrent maksimalnogo perioda nad konechnymi prostymi polyami”, Prikladnaya diskretnaya matematika, 2015, no. 1(27), 62–68
[5] Kuzmin S. A., “O dvoichnykh razryadnykh posledovatelnostyakh nad koltsami Galua, dopuskayuschikh effekt sokrascheniya perioda”, Fundament. i prikl. matem., 20:1 (2015), 223–230 | MR