On key schedule for block ciphers without week keys
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 70-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper describes the key schedule providing all different round keys for $r$-round symmetric block cipher. The key schedule is implemented by a series connection of automata: an autonomous automaton $A$ generating an output sequence of binary vectors with the period length is not less than $r$, and internally autonomous automaton with permanent memory containing the encryption key of a block cipher. As an example, a linear shift register with a maximum period is considered as the automaton $A$.
Keywords: block cipher, round key, $r$-unrepeatable sequence, $r$-unrepeatable automaton, index of unrepeatability.
@article{PDMA_2016_9_a27,
     author = {V. M. Fomichev},
     title = {On key schedule for block ciphers without week keys},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {70--73},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a27/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - On key schedule for block ciphers without week keys
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 70
EP  - 73
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a27/
LA  - ru
ID  - PDMA_2016_9_a27
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T On key schedule for block ciphers without week keys
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 70-73
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a27/
%G ru
%F PDMA_2016_9_a27
V. M. Fomichev. On key schedule for block ciphers without week keys. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 70-73. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a27/

[1] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.

[2] Romanko D. A., Fomichev V. M., “O sposobakh postroeniya kriptograficheskikh generatorov s zadannym pokazatelem bespovtornosti vykhodnykh posledovatelnostei”, Prikladnaya diskretnaya matematika. Prilozhenie, 2016, no. 9, 65–67