On the accuracy of matrix-graph approach to investigation of transformation mixing properties
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 57-59
Cet article a éte moissonné depuis la source Math-Net.Ru
Experimental results of evaluating the accuracy of matrix-graph approach to investigation of nonlinear transformation mixing properties are obtained. The experiment has been carried out with all those transformations of the binary $n$-dimensional vectors set, for which the mixing graph is the Wielandt graph with $n$ vertices, and also with the round substitutions used in AES, Kuznechik, and Magma block ciphers. It is shown that results obtained by matrix-graph approach are accurate for 25 % of transformations with the mixing Wielandt graph (for $n=9,10,11$) and for round substitutions in AES and Kuznechik algorithms. The results are not accurate for round substitution in Magma algorithm and for 75 % of transformations with the mixing Wielandt graph.
Keywords:
mixing properties, matrix-graph approach, Wielandt graph, AES, Kuznechik
Mots-clés : Magma.
Mots-clés : Magma.
@article{PDMA_2016_9_a22,
author = {S. N. Kyazhin and P. V. Lebedev},
title = {On the accuracy of matrix-graph approach to investigation of transformation mixing properties},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {57--59},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a22/}
}
TY - JOUR AU - S. N. Kyazhin AU - P. V. Lebedev TI - On the accuracy of matrix-graph approach to investigation of transformation mixing properties JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 57 EP - 59 IS - 9 UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a22/ LA - ru ID - PDMA_2016_9_a22 ER -
S. N. Kyazhin; P. V. Lebedev. On the accuracy of matrix-graph approach to investigation of transformation mixing properties. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 57-59. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a22/
[1] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.
[2] Kogos K. G., Fomichev V. M., “Polozhitelnye svoistva neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2012, no. 4(18), 5–13
[3] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112
[4] FIPS PUB 197, Advanced Encryption Standard, NIST, 2001, 47 pp.
[5] GOST R 34.12-2015, Informatsionnaya tekhnologiya. Kriptograficheskaya zaschita informatsii. Blochnye shifry, Standartinform, M., 2015, 25 pp.