To cryptanalysis of $2$-cascade finite automata cryptographic generators
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 41-43
Cet article a éte moissonné depuis la source Math-Net.Ru
An abstract finite automaton cryptographic generator generalizing the register $(\delta,\tau)$-step generator is defined. Some attacks on it with the object to determine initial states or (and) output functions of its automata are presented. The complexity of these attacks are much less than the complexity of the brute-force attack.
Keywords:
finite automaton, cryptographic generator, $(\delta, \tau)$-step generator, linearization attack.
Mots-clés : cryptanalysis
Mots-clés : cryptanalysis
@article{PDMA_2016_9_a16,
author = {G. P. Agibalov and I. A. Pankratova},
title = {To cryptanalysis of $2$-cascade finite automata cryptographic generators},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {41--43},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a16/}
}
TY - JOUR AU - G. P. Agibalov AU - I. A. Pankratova TI - To cryptanalysis of $2$-cascade finite automata cryptographic generators JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 41 EP - 43 IS - 9 UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a16/ LA - ru ID - PDMA_2016_9_a16 ER -
G. P. Agibalov; I. A. Pankratova. To cryptanalysis of $2$-cascade finite automata cryptographic generators. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 41-43. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a16/
[1] Fomichev V. M., Diskretnaya matematika i kriptologiya, DIALOG-MIFI, M., 2003, 400 pp.