Necessary condition for maximum component algebraic immunity of a~vectorial Boolean function
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 30-32

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that if a vectorial Boolean function $F\colon\mathbb Z_2^n\to\mathbb Z_2^m$ has the maximum component algebraic immunity, then $m\leq2^{\lceil({n+1})/2\rceil}-1$.
Keywords: component algebraic immunity, vectorial Boolean function.
@article{PDMA_2016_9_a11,
     author = {D. P. Pokrasenko},
     title = {Necessary condition for maximum component algebraic immunity of a~vectorial {Boolean} function},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30--32},
     publisher = {mathdoc},
     number = {9},
     year = {2016},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/}
}
TY  - JOUR
AU  - D. P. Pokrasenko
TI  - Necessary condition for maximum component algebraic immunity of a~vectorial Boolean function
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2016
SP  - 30
EP  - 32
IS  - 9
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/
LA  - ru
ID  - PDMA_2016_9_a11
ER  - 
%0 Journal Article
%A D. P. Pokrasenko
%T Necessary condition for maximum component algebraic immunity of a~vectorial Boolean function
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2016
%P 30-32
%N 9
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/
%G ru
%F PDMA_2016_9_a11
D. P. Pokrasenko. Necessary condition for maximum component algebraic immunity of a~vectorial Boolean function. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/