Necessary condition for maximum component algebraic immunity of a vectorial Boolean function
Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 30-32
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that if a vectorial Boolean function $F\colon\mathbb Z_2^n\to\mathbb Z_2^m$ has the maximum component algebraic immunity, then $m\leq2^{\lceil({n+1})/2\rceil}-1$.
Keywords:
component algebraic immunity, vectorial Boolean function.
@article{PDMA_2016_9_a11,
author = {D. P. Pokrasenko},
title = {Necessary condition for maximum component algebraic immunity of a~vectorial {Boolean} function},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {30--32},
year = {2016},
number = {9},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/}
}
TY - JOUR AU - D. P. Pokrasenko TI - Necessary condition for maximum component algebraic immunity of a vectorial Boolean function JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 30 EP - 32 IS - 9 UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/ LA - ru ID - PDMA_2016_9_a11 ER -
D. P. Pokrasenko. Necessary condition for maximum component algebraic immunity of a vectorial Boolean function. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/
[1] Meier W., Pasalic E., Carlet C., “Algebraic attacks and decomposition of Boolean functions”, Eurocrypt 2004, LNCS, 3027, 2004, 474–491 | MR | Zbl
[2] Carlet C., “On the algebraic immunities and higher order nonlinearities of vectorial Boolean functions”, Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, 2009, 104–116 | MR
[3] Courtois N., Meier W., “Algebraic attacks on stream ciphers with linear feedback”, Eurocrypt 2003, LNCS, 2656, 2003, 345–359 | MR | Zbl
[4] Pokrasenko D., “On the maximal component algebraic immunity of vectorial Boolean functions”, J. Appl. Industr. Math., 10 (2016), 257–263 | DOI | Zbl