Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2016_9_a11, author = {D. P. Pokrasenko}, title = {Necessary condition for maximum component algebraic immunity of a~vectorial {Boolean} function}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {30--32}, publisher = {mathdoc}, number = {9}, year = {2016}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/} }
TY - JOUR AU - D. P. Pokrasenko TI - Necessary condition for maximum component algebraic immunity of a~vectorial Boolean function JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2016 SP - 30 EP - 32 IS - 9 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/ LA - ru ID - PDMA_2016_9_a11 ER -
D. P. Pokrasenko. Necessary condition for maximum component algebraic immunity of a~vectorial Boolean function. Prikladnaya Diskretnaya Matematika. Supplement, no. 9 (2016), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2016_9_a11/
[1] Meier W., Pasalic E., Carlet C., “Algebraic attacks and decomposition of Boolean functions”, Eurocrypt 2004, LNCS, 3027, 2004, 474–491 | MR | Zbl
[2] Carlet C., “On the algebraic immunities and higher order nonlinearities of vectorial Boolean functions”, Enhancing Cryptographic Primitives with Techniques from Error Correcting Codes, 2009, 104–116 | MR
[3] Courtois N., Meier W., “Algebraic attacks on stream ciphers with linear feedback”, Eurocrypt 2003, LNCS, 2656, 2003, 345–359 | MR | Zbl
[4] Pokrasenko D., “On the maximal component algebraic immunity of vectorial Boolean functions”, J. Appl. Industr. Math., 10 (2016), 257–263 | DOI | Zbl