On intersection of derivatives images for APN functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 25-27.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of APN functions is considered in the paper. A vector Boolean function $F$ in $n$ variables from the set of all binary vectors of length $n$ to itself is called an APN function if the equation $F(x)\oplus F(x\oplus a)=b$ has at most $2$ solutions for any vectors $a,b$, where $a$ is a nonzero vector. A derivative of the function $F$ in the direction of $a$ is a Boolean function $D_aF(x)=F(x)\oplus F(x\oplus a)$. Two questions about intersections of the value sets for derivatives of two APN functions are proposed. The first one is about the minimal cardinality of such intersections. The second question is what a relationship these two APN functions have if the value sets of all directional derivatives of them pairwise coincide. Some partial results about both questions are obtained.
Keywords: vector Boolean functions, directional derivatives, APN functions.
@article{PDMA_2015_8_a8,
     author = {A. A. Gorodilova},
     title = {On intersection of derivatives images for {APN} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {25--27},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a8/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - On intersection of derivatives images for APN functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 25
EP  - 27
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a8/
LA  - ru
ID  - PDMA_2015_8_a8
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T On intersection of derivatives images for APN functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 25-27
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a8/
%G ru
%F PDMA_2015_8_a8
A. A. Gorodilova. On intersection of derivatives images for APN functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 25-27. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a8/

[1] Gorodilova A. A., “Kharakterizatsiya APN-funktsii cherez podfunktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 15–16

[2] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20

[3] Carlet C., “Open questions on nonlinearity and on APN functions”, LNCS, 9061, 2015, 83–107