On the number of symmetric coordinate functions of APN function
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 23-25.

Voir la notice de l'article provenant de la source Math-Net.Ru

In the paper, symmetric properties of APN functions are considered. For any APN function $F$, it is proved that $F$ can not be a symmetric vector function and there is no permutation of its coordinates such that $F$ keeps its value. Theorems about strict upper bounds for the number of its symmetric and rotation symmetric coordinate Boolean functions are proved. The lower bound for the number of distinct values of $F$ is obtained. It is shown that there exists an upper bound for the maximal number of coinciding values of $F$.
Keywords: vector Boolean function, APN function, symmetric function.
@article{PDMA_2015_8_a7,
     author = {V. A. Vitkup},
     title = {On the number of symmetric coordinate functions of {APN} function},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {23--25},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a7/}
}
TY  - JOUR
AU  - V. A. Vitkup
TI  - On the number of symmetric coordinate functions of APN function
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 23
EP  - 25
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a7/
LA  - ru
ID  - PDMA_2015_8_a7
ER  - 
%0 Journal Article
%A V. A. Vitkup
%T On the number of symmetric coordinate functions of APN function
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 23-25
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a7/
%G ru
%F PDMA_2015_8_a7
V. A. Vitkup. On the number of symmetric coordinate functions of APN function. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 23-25. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a7/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, Eurocrypt'1993, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20

[3] Budaghyan L., Construction and Analysis of Cryptographic Functions, Habilitation Thesis, University of Paris, Sept. 2013