On degree structure of graphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 20-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper presents some properties of degree structure for different classes of digraphs and describes degree structure for primitive digraphs with $n$ vertices and $n+1$ and $n+2$ arcs. For any integer $n\ge5$ and $k\in\{2,\dots,n-3\}$, the existence of a minimal primitive digraph with $n$ vertices, $n+k$ arcs and degree structure $\{(1,1)^{n-1},(k+1,k+1)^1\}$ is shown.
Keywords: minimal primitive graph, graph degree structure.
@article{PDMA_2015_8_a6,
     author = {V. M. Fomichev},
     title = {On degree structure of graphs},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {20--22},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a6/}
}
TY  - JOUR
AU  - V. M. Fomichev
TI  - On degree structure of graphs
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 20
EP  - 22
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a6/
LA  - ru
ID  - PDMA_2015_8_a6
ER  - 
%0 Journal Article
%A V. M. Fomichev
%T On degree structure of graphs
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 20-22
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a6/
%G ru
%F PDMA_2015_8_a6
V. M. Fomichev. On degree structure of graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 20-22. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a6/

[1] Fomichev V. M., “Svoistva minimalnykh primitivnykh orgrafov”, Prikladnaya diskretnaya matematika, 2015, no. 2(28), 86–96