On degree structure of graphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 20-22
Cet article a éte moissonné depuis la source Math-Net.Ru
The paper presents some properties of degree structure for different classes of digraphs and describes degree structure for primitive digraphs with $n$ vertices and $n+1$ and $n+2$ arcs. For any integer $n\ge5$ and $k\in\{2,\dots,n-3\}$, the existence of a minimal primitive digraph with $n$ vertices, $n+k$ arcs and degree structure $\{(1,1)^{n-1},(k+1,k+1)^1\}$ is shown.
Keywords:
minimal primitive graph, graph degree structure.
@article{PDMA_2015_8_a6,
author = {V. M. Fomichev},
title = {On degree structure of graphs},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {20--22},
year = {2015},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a6/}
}
V. M. Fomichev. On degree structure of graphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 20-22. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a6/