On the complexity of discrete logarithm problem in a~finite cyclic group with the efficient inversion
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 149-151
Voir la notice de l'article provenant de la source Math-Net.Ru
Discrete logarithm problem in a finite group $G$ with the efficient inversion consists in solving the equation $Q=nP$ with respect to $n$ in the interval $(-N/2,N/2)$ for the specified $P,Q\in G$, $0$. If the inversion in the group $G$ may be computed significantly faster than the group operation, then analogously to the solution of the classical discrete logarithm, we may speed up the algorithm. In 2010, S. Galbraith and R. Ruprai proposed an algorithm solving this problem with the average complexity $(1{,}36+\mathrm o(1))\sqrt N$ of group operations in $G$ where $N\to\infty$. We show that the average complexity of the algorithm for finding the solution of the discrete logarithm problem in the interval $(-N/2,N/2)$ equals $(1+\varepsilon)\sqrt{\pi N/2}$ group operations.
Keywords:
discrete logarithm problem in interval, Gaudry–Schost algorithm.
@article{PDMA_2015_8_a57,
author = {M. V. Nikolaev},
title = {On the complexity of discrete logarithm problem in a~finite cyclic group with the efficient inversion},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {149--151},
publisher = {mathdoc},
number = {8},
year = {2015},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a57/}
}
TY - JOUR AU - M. V. Nikolaev TI - On the complexity of discrete logarithm problem in a~finite cyclic group with the efficient inversion JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2015 SP - 149 EP - 151 IS - 8 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a57/ LA - ru ID - PDMA_2015_8_a57 ER -
%0 Journal Article %A M. V. Nikolaev %T On the complexity of discrete logarithm problem in a~finite cyclic group with the efficient inversion %J Prikladnaya Diskretnaya Matematika. Supplement %D 2015 %P 149-151 %N 8 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a57/ %G ru %F PDMA_2015_8_a57
M. V. Nikolaev. On the complexity of discrete logarithm problem in a~finite cyclic group with the efficient inversion. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 149-151. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a57/