Number estimation for additional arcs in a~minimal $1$-vertex extension of tournament
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 111-113.

Voir la notice de l'article provenant de la source Math-Net.Ru

We obtain lower and upper bounds for the number of additional arcs in minimal vertex $1$-extension of arbitrary tournament. It is shown that the estimates are sharp. We describe tournaments, for which estimates are attained.
Keywords: tournament, minimal vertex extension, fault-tolerance.
@article{PDMA_2015_8_a41,
     author = {M. B. Abrosimov and O. V. Modenova},
     title = {Number estimation for additional arcs in a~minimal $1$-vertex extension of tournament},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {111--113},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/}
}
TY  - JOUR
AU  - M. B. Abrosimov
AU  - O. V. Modenova
TI  - Number estimation for additional arcs in a~minimal $1$-vertex extension of tournament
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 111
EP  - 113
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/
LA  - ru
ID  - PDMA_2015_8_a41
ER  - 
%0 Journal Article
%A M. B. Abrosimov
%A O. V. Modenova
%T Number estimation for additional arcs in a~minimal $1$-vertex extension of tournament
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 111-113
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/
%G ru
%F PDMA_2015_8_a41
M. B. Abrosimov; O. V. Modenova. Number estimation for additional arcs in a~minimal $1$-vertex extension of tournament. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 111-113. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/

[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl

[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.

[3] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | DOI | MR

[4] Abrosimov M. B., Dolgov A. A., “Semeistva tochnykh rasshirenii turnirov”, Prikladnaya diskretnaya matematika, 2008, no. 1, 101–107