Number estimation for additional arcs in a minimal $1$-vertex extension of tournament
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 111-113
Cet article a éte moissonné depuis la source Math-Net.Ru
We obtain lower and upper bounds for the number of additional arcs in minimal vertex $1$-extension of arbitrary tournament. It is shown that the estimates are sharp. We describe tournaments, for which estimates are attained.
Keywords:
tournament, minimal vertex extension, fault-tolerance.
@article{PDMA_2015_8_a41,
author = {M. B. Abrosimov and O. V. Modenova},
title = {Number estimation for additional arcs in a~minimal $1$-vertex extension of tournament},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {111--113},
year = {2015},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/}
}
TY - JOUR AU - M. B. Abrosimov AU - O. V. Modenova TI - Number estimation for additional arcs in a minimal $1$-vertex extension of tournament JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2015 SP - 111 EP - 113 IS - 8 UR - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/ LA - ru ID - PDMA_2015_8_a41 ER -
M. B. Abrosimov; O. V. Modenova. Number estimation for additional arcs in a minimal $1$-vertex extension of tournament. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 111-113. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a41/
[1] Hayes J. P., “A graph model for fault-tolerant computing system”, IEEE Trans. Comput., C25:9 (1976), 875–884 | DOI | MR | Zbl
[2] Abrosimov M. B., Grafovye modeli otkazoustoichivosti, Izd-vo Sarat. un-ta, Saratov, 2012, 192 pp.
[3] Abrosimov M. B., “Minimalnye vershinnye rasshireniya napravlennykh zvezd”, Diskretnaya matematika, 23:2 (2011), 93–102 | DOI | MR
[4] Abrosimov M. B., Dolgov A. A., “Semeistva tochnykh rasshirenii turnirov”, Prikladnaya diskretnaya matematika, 2008, no. 1, 101–107