Properties of the group generated by translation groups of the vector space and the residue ring
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 15-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we consider the additive group $\mathbb Z_{2^n}^+$ of the residue ring $\mathbb Z_{2^n}$, the additive group $V_n^+$ of the vector space $V_n$ over the field $\mathrm{GF}(2)$, and subgroups of the group $G_n$ generated by $\mathbb Z_{2^n}^+$, $V_n^+$. These groups are subgroups of the Sylow $2$-subgroup of the symmetrical group $S(\mathbb Z_{2^n})$ and have common systems of imprimitivity. In cryptography, $\mathbb Z_{2^n}^+$, $V_n^+$ are connected with groups generated by all key additions. We describe a permutation structure of subgroups of $G_n$. We prove that the group of lower triangular $(n\times n)$-matrices over $\mathrm{GF}(2)$ and the full affine group over $\mathbb Z_{2^n}$ are subgroups of ${G_n}$. We also describe properties of imprimitive subgroups of $G_n$.
Keywords: wreath product, Sylow $2$-subgroup, additive group of the residue ring, additive group of the vector space, ARX block cipher.
Mots-clés : imprimitive group
@article{PDMA_2015_8_a4,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {Properties of the group generated by translation groups of the vector space and the residue ring},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {15--16},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a4/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - Properties of the group generated by translation groups of the vector space and the residue ring
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 15
EP  - 16
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a4/
LA  - ru
ID  - PDMA_2015_8_a4
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T Properties of the group generated by translation groups of the vector space and the residue ring
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 15-16
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a4/
%G ru
%F PDMA_2015_8_a4
B. A. Pogorelov; M. A. Pudovkina. Properties of the group generated by translation groups of the vector space and the residue ring. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 15-16. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a4/

[1] Grossman E., Group Theoretic Remarks on Cryptographic Systems Based on Two Types of Additions, IBM Report RC-4742, Yorktown Heights, N.Y., Feb. 1974