On generic complexity of the quadratic residuosity problem
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 71-73.

Voir la notice de l'article provenant de la source Math-Net.Ru

Generic-case approach to algorithmic problems was suggested by A. Miasnikov, I. Kapovich, P. Schupp and V. Shpilrain in 2003. This approach studies behavior of an algorithm on typical (almost all) inputs and ignores the rest of inputs. Many classical undecidable or hard algorithmic problems become feasible in the generic case. But there are generically hard problems. For example, this is the classical discrete logarithm problem. In this talk, we consider generic complexity of the quadratic residuosity problem. We fit this problem in the frameworks of generic complexity and prove that its natural subproblem is generically hard provided that the quadratic residuosity problem is hard in the worst case.
Keywords: generic complexity, quadratic residue, probabilistic algorithm.
@article{PDMA_2015_8_a25,
     author = {A. N. Rybalov},
     title = {On generic complexity of the quadratic residuosity problem},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {71--73},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a25/}
}
TY  - JOUR
AU  - A. N. Rybalov
TI  - On generic complexity of the quadratic residuosity problem
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 71
EP  - 73
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a25/
LA  - ru
ID  - PDMA_2015_8_a25
ER  - 
%0 Journal Article
%A A. N. Rybalov
%T On generic complexity of the quadratic residuosity problem
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 71-73
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a25/
%G ru
%F PDMA_2015_8_a25
A. N. Rybalov. On generic complexity of the quadratic residuosity problem. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 71-73. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a25/

[1] Kapovich I., Miasnikov A., Schupp P., Shpilrain V., “Generic-case complexity, decision problems in group theory and random walks”, J. Algebra, 264:2 (2003), 665–694 | DOI | MR | Zbl

[2] Blum M., Micali S., “How to generate cryptographically strong sequences of pseudorandom bits”, SIAM J. Computing, 13:4 (1984), 850–864 | DOI | MR | Zbl

[3] Mao V., Sovremennaya kriptografiya: teoriya i praktika, Vilyams, M., 2005, 768 pp.

[4] Rybalov A. N., “O genericheskoi slozhnosti problemy raspoznavaniya kvadratichnykh vychetov”, Prikladnaya diskretnaya matematika, 2015, no. 2, 54–58