$\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 69-71.

Voir la notice de l'article provenant de la source Math-Net.Ru

In this paper, we describe relations between $\otimes_{\mathbf W,\mathrm{ch}}$-markovian block ciphers and a wreath product. Let $X$ be an alphabet of plaintexts (ciphertexts) in iterated block ciphers, $(X,\otimes)$ be a regular abelian group, and $\mathbf W=\{W_0,\dots,W_{r-1}\}$ be a partition of $X$. In the case when $\mathbf W$ is the set of cosets of a subgroup of $(X,\otimes)$, we prove that $\otimes$-Markov block cipher is $\otimes_{\mathbf W,\mathrm{ch}}$-markovian iff $\mathbf W$ is an imprimitivity system of the group generated by round functions of the cipher. We show that there are $\otimes_{\mathbf W,\mathrm{ch}}$-markovian block ciphers where $\mathbf W$ is not a set of cosets. So, for the additive group $(V_n^+,\oplus)$ of the vector space $V_n$, we describe $\oplus_{\mathbf W,\mathrm{ch}}$-markovian classes of nonlinear and affine transformations for $\mathbf W$ being not a set of cosets. We show that the set of all affine $\oplus_{\mathbf W,\mathrm{ch}}$-markovian transformations on $V_n$ is a group and give examples of it.
Mots-clés : imprimitive group
Keywords: homomorphism method, XSL-block cipher, wreath product.
@article{PDMA_2015_8_a24,
     author = {B. A. Pogorelov and M. A. Pudovkina},
     title = {$\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {69--71},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/}
}
TY  - JOUR
AU  - B. A. Pogorelov
AU  - M. A. Pudovkina
TI  - $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 69
EP  - 71
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/
LA  - ru
ID  - PDMA_2015_8_a24
ER  - 
%0 Journal Article
%A B. A. Pogorelov
%A M. A. Pudovkina
%T $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 69-71
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/
%G ru
%F PDMA_2015_8_a24
B. A. Pogorelov; M. A. Pudovkina. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 69-71. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/

[1] Pogorelov B. A., Pudovkina M. A., “$\otimes_{\mathbf W,\mathrm{ch}}$-markovskie preobrazovaniya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 17–19

[2] Muzychuk M. E., “Podskhemy skhemy Khemminga”, Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov, Trudy seminara, VNII sistemnykh issledovanii, 1985, 49–76 | MR

[3] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, 2006, 190–219

[4] Pogorelov B. A., Pudovkina M. A., “Podmetriki metriki Khemminga i preobrazovaniya, rasprostranyayuschie iskazheniya v zadannoe chislo raz”, Trudy po diskretnoi matematike, 10, 2007, 202–238