$\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 69-71
Cet article a éte moissonné depuis la source Math-Net.Ru
In this paper, we describe relations between $\otimes_{\mathbf W,\mathrm{ch}}$-markovian block ciphers and a wreath product. Let $X$ be an alphabet of plaintexts (ciphertexts) in iterated block ciphers, $(X,\otimes)$ be a regular abelian group, and $\mathbf W=\{W_0,\dots,W_{r-1}\}$ be a partition of $X$. In the case when $\mathbf W$ is the set of cosets of a subgroup of $(X,\otimes)$, we prove that $\otimes$-Markov block cipher is $\otimes_{\mathbf W,\mathrm{ch}}$-markovian iff $\mathbf W$ is an imprimitivity system of the group generated by round functions of the cipher. We show that there are $\otimes_{\mathbf W,\mathrm{ch}}$-markovian block ciphers where $\mathbf W$ is not a set of cosets. So, for the additive group $(V_n^+,\oplus)$ of the vector space $V_n$, we describe $\oplus_{\mathbf W,\mathrm{ch}}$-markovian classes of nonlinear and affine transformations for $\mathbf W$ being not a set of cosets. We show that the set of all affine $\oplus_{\mathbf W,\mathrm{ch}}$-markovian transformations on $V_n$ is a group and give examples of it.
Mots-clés :
imprimitive group
Keywords: homomorphism method, XSL-block cipher, wreath product.
Keywords: homomorphism method, XSL-block cipher, wreath product.
@article{PDMA_2015_8_a24,
author = {B. A. Pogorelov and M. A. Pudovkina},
title = {$\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {69--71},
year = {2015},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/}
}
TY - JOUR
AU - B. A. Pogorelov
AU - M. A. Pudovkina
TI - $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers
JO - Prikladnaya Diskretnaya Matematika. Supplement
PY - 2015
SP - 69
EP - 71
IS - 8
UR - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/
LA - ru
ID - PDMA_2015_8_a24
ER -
B. A. Pogorelov; M. A. Pudovkina. $\otimes_{\mathbf W,\mathrm{ch}}$-markovian and imprimitive properties of block ciphers. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 69-71. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a24/
[1] Pogorelov B. A., Pudovkina M. A., “$\otimes_{\mathbf W,\mathrm{ch}}$-markovskie preobrazovaniya”, Prikladnaya diskretnaya matematika. Prilozhenie, 2015, no. 8, 17–19
[2] Muzychuk M. E., “Podskhemy skhemy Khemminga”, Issledovaniya po algebraicheskoi teorii kombinatornykh ob'ektov, Trudy seminara, VNII sistemnykh issledovanii, 1985, 49–76 | MR
[3] Pogorelov B. A., “Podmetriki metriki Khemminga i teorema A. A. Markova”, Trudy po diskretnoi matematike, 9, 2006, 190–219
[4] Pogorelov B. A., Pudovkina M. A., “Podmetriki metriki Khemminga i preobrazovaniya, rasprostranyayuschie iskazheniya v zadannoe chislo raz”, Trudy po diskretnoi matematike, 10, 2007, 202–238