Non-endomorphic perfect ciphers with two elements in plaintext alphabet
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 63-66.

Voir la notice de l'article provenant de la source Math-Net.Ru

This paper deals with the non-endomorphic perfect ciphers in the case when the plaintext alphabet consists of two elements. According to Shannon, these ciphers are absolutely immune against the attack on ciphertext. In terms of linear algebra on the basis of Birkhoff's theorem (about the classiffcation of doubly stochastic matrices), the matrices of cipher keys probabilities are described. The set of possible values of apriori probabilities for elements of ciphertext alphabet is constructed.
Keywords: perfect ciphers, non-endomorphic ciphers, maximum ciphers, doubly stochastic matrices.
@article{PDMA_2015_8_a22,
     author = {N. V. Medvedeva and S. S. Titov},
     title = {Non-endomorphic perfect ciphers with two elements in plaintext alphabet},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {63--66},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a22/}
}
TY  - JOUR
AU  - N. V. Medvedeva
AU  - S. S. Titov
TI  - Non-endomorphic perfect ciphers with two elements in plaintext alphabet
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 63
EP  - 66
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a22/
LA  - ru
ID  - PDMA_2015_8_a22
ER  - 
%0 Journal Article
%A N. V. Medvedeva
%A S. S. Titov
%T Non-endomorphic perfect ciphers with two elements in plaintext alphabet
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 63-66
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a22/
%G ru
%F PDMA_2015_8_a22
N. V. Medvedeva; S. S. Titov. Non-endomorphic perfect ciphers with two elements in plaintext alphabet. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 63-66. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a22/

[1] Shennon K., “Teoriya svyazi v sekretnykh sistemakh”, Raboty po teorii informatsii i kibernetike, Nauka, M., 1963, 333–402

[2] Alferov A. P., Zubov A. Yu., Kuzmin A. S., Cheremushkin A. V., Osnovy kriptografii, Gelios ARV, M., 2001

[3] Zubov A. Yu., Sovershennye shifry, Gelios ARV, M., 2003

[4] Birkhoff G. D., “Tres observations sobre el algebra lineal”, Revista Universidad Nacional Tucuman. Ser. A, 5 (1946), 147–151 | MR | Zbl

[5] Medvedeva N. V., Titov S. S., “O neminimalnykh sovershennykh shifrakh”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 42–44