On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 11-13
Cet article a éte moissonné depuis la source Math-Net.Ru
It is shown that the mixing graphs for the functions realized by A5/1 type algorithms based on linear feedback shift registers of lengths $n,m,p$ with characteristic polynomials of weights $\nu,\mu,\pi$ are primitive. The following lower and upper bounds for the mixing graph exponent and local exponent depending on these parameters take place: $1+\max\{\lceil n/\nu\rceil,\lceil m/\mu\rceil,\lceil p/\pi\rceil\}\le\exp\Gamma\le\max\{n,m,p\}$. It is obtained that, for A5/1 algorithm, exponent $\exp\Gamma$ and local exponent $*J$-exp $\Gamma$, $J=\{1,20,42\}$, are equal to 21. This matches the idle running length of A5/1 generator.
Keywords:
A5/1 generator, primitive graph, exponent, local exponent.
@article{PDMA_2015_8_a2,
author = {S. N. Kyazhin and V. M. Fomichev},
title = {On local exponents of the mixing graphs for the functions realized by {A5/1} type algorithms},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {11--13},
year = {2015},
number = {8},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/}
}
TY - JOUR AU - S. N. Kyazhin AU - V. M. Fomichev TI - On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2015 SP - 11 EP - 13 IS - 8 UR - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/ LA - ru ID - PDMA_2015_8_a2 ER -
S. N. Kyazhin; V. M. Fomichev. On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 11-13. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/