On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 11-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is shown that the mixing graphs for the functions realized by A5/1 type algorithms based on linear feedback shift registers of lengths $n,m,p$ with characteristic polynomials of weights $\nu,\mu,\pi$ are primitive. The following lower and upper bounds for the mixing graph exponent and local exponent depending on these parameters take place: $1+\max\{\lceil n/\nu\rceil,\lceil m/\mu\rceil,\lceil p/\pi\rceil\}\le\exp\Gamma\le\max\{n,m,p\}$. It is obtained that, for A5/1 algorithm, exponent $\exp\Gamma$ and local exponent $*J$-exp $\Gamma$, $J=\{1,20,42\}$, are equal to 21. This matches the idle running length of A5/1 generator.
Keywords: A5/1 generator, primitive graph, exponent, local exponent.
@article{PDMA_2015_8_a2,
     author = {S. N. Kyazhin and V. M. Fomichev},
     title = {On local exponents of the mixing graphs for the functions realized by {A5/1} type algorithms},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {11--13},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/}
}
TY  - JOUR
AU  - S. N. Kyazhin
AU  - V. M. Fomichev
TI  - On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 11
EP  - 13
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/
LA  - ru
ID  - PDMA_2015_8_a2
ER  - 
%0 Journal Article
%A S. N. Kyazhin
%A V. M. Fomichev
%T On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 11-13
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/
%G ru
%F PDMA_2015_8_a2
S. N. Kyazhin; V. M. Fomichev. On local exponents of the mixing graphs for the functions realized by A5/1 type algorithms. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 11-13. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a2/

[1] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010

[2] Kyazhin S. N., Fomichev V. M., “Lokalnaya primitivnost grafov i neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2014, no. 3(25), 68–80

[3] Fomichev V. M., “Svoistva putei v grafakh i multigrafakh”, Prikladnaya diskretnaya matematika, 2010, no. 1(7), 118–124