On properties of the set of values of an arbitrary vector Boolean function
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 51-53.

Voir la notice de l'article provenant de la source Math-Net.Ru

For an arbitrary vector Boolean function $F\colon\mathbb F_2^n\to\mathbb F_2^n$, some sufficient conditions that $\{F(x)\oplus F(x\oplus a)\colon x,a\in\mathbb F_2^n\}=\mathbb F_2^n$ are stated. This result is applied to researching metrical properties of APN functions.
Keywords: vector Boolean function, differentially $\delta$-uniform function, APN function.
@article{PDMA_2015_8_a18,
     author = {G. I. Shushuev},
     title = {On properties of the set of values of an arbitrary vector {Boolean} function},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {51--53},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a18/}
}
TY  - JOUR
AU  - G. I. Shushuev
TI  - On properties of the set of values of an arbitrary vector Boolean function
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 51
EP  - 53
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a18/
LA  - ru
ID  - PDMA_2015_8_a18
ER  - 
%0 Journal Article
%A G. I. Shushuev
%T On properties of the set of values of an arbitrary vector Boolean function
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 51-53
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a18/
%G ru
%F PDMA_2015_8_a18
G. I. Shushuev. On properties of the set of values of an arbitrary vector Boolean function. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 51-53. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a18/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Biham E., Shamir A., “Differential cryptoanalysis of DES-like cryptosystems”, J. Cryptology, 4:1 (1991), 3–72 | DOI | MR | Zbl

[3] Beth T., Ding C., “On almost perfect nonlinear permutations”, LNCS, 765, 1994, 65–76 | MR | Zbl

[4] Shushuev G. I., “Vektornye bulevy funktsii na rasstoyanii odin ot APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 36–37