On the invertibility of vector Boolean functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 35-37.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class $\mathcal F_{n,m,k}$ of invertible vector Boolean functions $F\colon\mathbb F_2^n\to\mathbb F_2^m$ with coordinate functions depending on the given number $k$ variables is considered. It is proved that 1) these functions do not exist for any $n=m$ and $k=2$; 2) the functions of the class $\mathcal F_{n,n,n-1}$ can (can not) be built from affine coordinate functions for even (odd) $n$; 3) if $\mathcal F_{n,m,k}\neq\varnothing$ then $\mathcal F_{n+1,m+1,k}\neq\varnothing$.
Keywords: vector Boolean functions, invertible function.
@article{PDMA_2015_8_a13,
     author = {I. A. Pankratova},
     title = {On the invertibility of vector {Boolean} functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {35--37},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a13/}
}
TY  - JOUR
AU  - I. A. Pankratova
TI  - On the invertibility of vector Boolean functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 35
EP  - 37
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a13/
LA  - ru
ID  - PDMA_2015_8_a13
ER  - 
%0 Journal Article
%A I. A. Pankratova
%T On the invertibility of vector Boolean functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 35-37
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a13/
%G ru
%F PDMA_2015_8_a13
I. A. Pankratova. On the invertibility of vector Boolean functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 35-37. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a13/

[1] Agibalov G. P., “SIBCiphers – simmetrichnye iterativnye blochnye shifry iz bulevykh funktsii s klyuchevymi argumentami”, Prikladnaya diskretnaya matematika. Prilozhenie, 2014, no. 7, 43–48