The inverse of differentiable permutations over groups
Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 30-32.

Voir la notice de l'article provenant de la source Math-Net.Ru

The concept of a differentiable function over a group with a normal series generalizing the concept of a polynomial function is introduced. In the case of abelian, nilpotent and solvable groups, a recurrent formula for constructing the inverse of differentiable permutation with respect to composition is proved.
Mots-clés : permutation, polynomial over group
Keywords: differentiable function.
@article{PDMA_2015_8_a10,
     author = {A. V. Karpov},
     title = {The inverse of differentiable permutations over groups},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {30--32},
     publisher = {mathdoc},
     number = {8},
     year = {2015},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2015_8_a10/}
}
TY  - JOUR
AU  - A. V. Karpov
TI  - The inverse of differentiable permutations over groups
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2015
SP  - 30
EP  - 32
IS  - 8
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2015_8_a10/
LA  - ru
ID  - PDMA_2015_8_a10
ER  - 
%0 Journal Article
%A A. V. Karpov
%T The inverse of differentiable permutations over groups
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2015
%P 30-32
%N 8
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2015_8_a10/
%G ru
%F PDMA_2015_8_a10
A. V. Karpov. The inverse of differentiable permutations over groups. Prikladnaya Diskretnaya Matematika. Supplement, no. 8 (2015), pp. 30-32. http://geodesic.mathdoc.fr/item/PDMA_2015_8_a10/

[1] Anashin V. S., “Noncommutative algebraic dynamics: ergodic theory for profinite groups”, Proc. Steklov Institute of Math., 265, 2009, 30–58 | DOI | MR | Zbl

[2] Karpov A. V., “Perestanovochnye mnogochleny nad primarnymi koltsami”, Prikladnaya diskretnaya matematika, 2013, no. 4(22), 16–21