Nonlinearity bounds for vectorial Boolean functions of special form
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 24-26
Cet article a éte moissonné depuis la source Math-Net.Ru
The problem of combining different cryptographic properties of vectorial Boolean functions is considered. An upper nonlinearity bound for vectorial Boolean functions constructed using affine Boolean functions is obtained. It is shown that, for any natural $n$, the bound is reachable. Besides, a lower bound for the number of vectorial functions having a fixed nonlinearity and constructed from balanced Boolean functions is obtained.
Keywords:
vectorial Boolean function, nonlinearity, affine function, balancedness.
@article{PDMA_2014_7_a8,
author = {E. P. Korsakova},
title = {Nonlinearity bounds for vectorial {Boolean} functions of special form},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {24--26},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a8/}
}
E. P. Korsakova. Nonlinearity bounds for vectorial Boolean functions of special form. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 24-26. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a8/
[1] Logachev O. A., Salnikov A. A., Smyshlyaev S. V., Yaschenko V. V., Bulevy funktsii v teorii kodirovaniya i kriptologii, 2-e izd., MTsNMO, M., 2012, 584 pp.
[2] Pankratova I. A., Bulevy funktsii v kriptografii, Ucheb. posobie, Izdatelskii Dom Tomskogo gosudarstvennogo universiteta, Tomsk, 2014, 88 pp.
[3] Carlet C., “Boolean functions for cryptography and error-correcting codes”, Boolean Models and Methods in Mathematics, Computer Science, and Engeneering, Ch. 8, eds. P. Hammer, Y. Crama, Cambridge Univ. Press, 2010, 257–397 http://www.math.univ-paris13.fr/~carlet/ | DOI | Zbl
[4] Sidelnikov V. M., “O vzaimnoi korrelyatsii posledovatelnostei”, Problemy kibernetiki, 24, 1971, 15–42 | MR | Zbl