Zakrevskij's cipher FPGA implementation based on the formula-defined reconfigurable FSM
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 142-143.

Voir la notice de l'article provenant de la source Math-Net.Ru

A new version for FPGA implementation of Zakrevskij's cipher is presented. Unlike the previous version, here a configurable FSM is specified not by tables but by some analytical expression using the operation of modulo addition. In the paper, some numerical characteristics (throughput and area) of FPGA implementations are given for both these versions. In partucular, it is shown that the throughput of PLA for the new version is up to 17–36 % higher than for the previous one.
Keywords: Zakrevskij's cipher, table-specified FSM, formula-specified FSM, throughput, area, FPGA, VHDL.
Mots-clés : reconfigurable FSM
@article{PDMA_2014_7_a60,
     author = {D. S. Kovalev and V. N. Trenkaev},
     title = {Zakrevskij's cipher {FPGA} implementation based on the formula-defined reconfigurable {FSM}},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {142--143},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a60/}
}
TY  - JOUR
AU  - D. S. Kovalev
AU  - V. N. Trenkaev
TI  - Zakrevskij's cipher FPGA implementation based on the formula-defined reconfigurable FSM
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 142
EP  - 143
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a60/
LA  - ru
ID  - PDMA_2014_7_a60
ER  - 
%0 Journal Article
%A D. S. Kovalev
%A V. N. Trenkaev
%T Zakrevskij's cipher FPGA implementation based on the formula-defined reconfigurable FSM
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 142-143
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a60/
%G ru
%F PDMA_2014_7_a60
D. S. Kovalev; V. N. Trenkaev. Zakrevskij's cipher FPGA implementation based on the formula-defined reconfigurable FSM. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 142-143. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a60/

[1] Kovalev D. S., “Realizatsiya na PLIS shifra Zakrevskogo na osnove perestraivaemogo avtomata”, Vestnik Sibirskogo gosudarstvennogo aerokosmicheskogo universiteta im. akad. M. F. Reshetnëva, 2014, no. 1, 16–18

[2] Zakrevskii A. D., “Metod avtomaticheskoi shifratsii soobschenii”, Prikladnaya diskretnaya matematika, 2009, no. 2, 127–137

[3] Trenkaev V. N., “Realizatsiya shifra Zakrevskogo na osnove perestraivaemogo avtomata”, Prikladnaya diskretnaya matematika, 2010, no. 3, 69–76

[4] Rouvroy G., Standaert F. X., Quisquater J. J., Legat J. D., “Compact and efficient encryption/decryption module for FPGA implementation of the AES Rijndael very well suited for small embedded applications”, Proc. Intern. Conf. Inform. Technology: Coding and Computing, v. 2, 2004, 583–587