Research of differentiable modulo $p^n$ functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 19-22.

Voir la notice de l'article provenant de la source Math-Net.Ru

For the class $D_n$ of differentiable modulo $p^n$ functions, subsets $A_n$, $B_n$, $C_n$ are defined so that every function $f$ in $D_n$ is uniquely represented by the sum of certain functions $f_A\in A_n$, $f_B\in B_n$, $f_C\in C_n$. The numbers of functions, of bijective functions and of transitive functions in $D_n$ are found via this representation. According to these cardinality relations, the set of transitive differentiable modulo $p^2$ functions coincide with the set of transitive polynomial functions, but this ceases to be true with increasing the degree of the modulo. It is shown that a function $f$ in $D_n$ is invertible if and only if $f$ is invertible modulo $p$ and the derivatives of $f$ are not equal 0 modulo $p^i$, $i=2,\dots,n$. A recurrent formula is presented for finding inverse differentiable modulo $p^n$ function for a bijective function in $D_n$. A transitivity condition is obtained for a differentiable modulo $p^n$ function. It is shown that any transitive function $f$ in $D_n$ may be constructed from a function $\hat f$ in $D_{n-1}$ such that $f=\hat f\pmod{p^{n-1}}$.
Keywords: recurrent sequence, differentiable modulo function, inverse function, bijective function, transitive function.
@article{PDMA_2014_7_a6,
     author = {A. S. Ivachev},
     title = {Research of differentiable modulo $p^n$ functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {19--22},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a6/}
}
TY  - JOUR
AU  - A. S. Ivachev
TI  - Research of differentiable modulo $p^n$ functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 19
EP  - 22
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a6/
LA  - ru
ID  - PDMA_2014_7_a6
ER  - 
%0 Journal Article
%A A. S. Ivachev
%T Research of differentiable modulo $p^n$ functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 19-22
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a6/
%G ru
%F PDMA_2014_7_a6
A. S. Ivachev. Research of differentiable modulo $p^n$ functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 19-22. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a6/

[1] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Diskretnaya matematika, 14:4 (2002), 3–64 | DOI | MR | Zbl

[2] Larin M. V., “Tranzitivnye polinomialnye preobrazovaniya kolets vychetov”, Diskretnaya matematika, 14:2 (2002), 20–32 | DOI | MR | Zbl