Sufficient conditions for local primitiveness of nonprimitive digraphs
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 130-132.

Voir la notice de l'article provenant de la source Math-Net.Ru

For some communication systems modelled by nonnegative matrices, some important properties are reached if certain submatrices of the matrix degree are positive. In order to investigate these properties, the concepts of local primitiveness and local exponent of the matrix (digraph) connected with positivity of a certain submatrix (subgraph) of this matrix are introduced. Several sufficient conditions of local primitiveness and some bounds of local exponents for nonprimitive digraphs are presented.
Mots-clés : primitive matrix
Keywords: primitive graph, local primitiveness, local exponent.
@article{PDMA_2014_7_a55,
     author = {S. N. Kyazhin},
     title = {Sufficient conditions for local primitiveness of nonprimitive digraphs},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {130--132},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a55/}
}
TY  - JOUR
AU  - S. N. Kyazhin
TI  - Sufficient conditions for local primitiveness of nonprimitive digraphs
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 130
EP  - 132
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a55/
LA  - ru
ID  - PDMA_2014_7_a55
ER  - 
%0 Journal Article
%A S. N. Kyazhin
%T Sufficient conditions for local primitiveness of nonprimitive digraphs
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 130-132
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a55/
%G ru
%F PDMA_2014_7_a55
S. N. Kyazhin. Sufficient conditions for local primitiveness of nonprimitive digraphs. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 130-132. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a55/

[1] Kyazhin S. N., Fomichev V. M., “Lokalnaya primitivnost grafov i neotritsatelnykh matrits”, Prikladnaya diskretnaya matematika, 2014, no. 3(25) (to appear)