Building edge extensions of star-like trees
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 128-130.

Voir la notice de l'article provenant de la source Math-Net.Ru

Minimal edge extension of a graph can be regarded as a model of optimal edge fault tolerant implementation of a system. This paper is about the upper bound of the number of additional edges in a minimal edge $1$-extensions for a special class of graphs – star-like trees. In this paper, a scheme for constructing an edge $1$-extension for any kind of star-like trees is presented.
Keywords: minimal extensions of graphs, star-like tree, fault tolerance.
@article{PDMA_2014_7_a54,
     author = {D. D. Komarov},
     title = {Building edge extensions of star-like trees},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {128--130},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a54/}
}
TY  - JOUR
AU  - D. D. Komarov
TI  - Building edge extensions of star-like trees
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 128
EP  - 130
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a54/
LA  - ru
ID  - PDMA_2014_7_a54
ER  - 
%0 Journal Article
%A D. D. Komarov
%T Building edge extensions of star-like trees
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 128-130
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a54/
%G ru
%F PDMA_2014_7_a54
D. D. Komarov. Building edge extensions of star-like trees. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 128-130. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a54/

[1] Abrosimov M. B., “O nizhnei otsenke chisla reber minimalnogo rebernogo 1-rasshireniya sverkhstroinogo dereva”, Izv. Sarat. un-ta. Nov. ser. Ser. Matematika. Mekhanika. Informatika, 11:3, Ch. 2 (2011), 111–117

[2] Bogomolov A. M., Salii V. N., Algebraicheskie osnovy teorii diskretnykh sistem, Nauka, M., 1997, 368 pp. | MR | Zbl