Characterization of APN functions by means of subfunctions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 15-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

A vectorial Boolean function $F\colon\{0,1\}^n\to\{0,1\}^n$ is called an APN function if the equation $F(x)\oplus F(x\oplus a)=b$ has at most 2 solutions for any vectors $a,b$, where $a\neq0$. The complete characterization of APN functions by means of subfunctions is found. It is proved that $F$ is APN function if and only if each of its subfunctions in $n-1$ variables is an APN function or has the order of differential uniformity 4 and the admissibility conditions are hold. Some numerical results of this characterization for small number $n$ of variables are presented.
Keywords: vectorial Boolean function, differentially $\delta$-uniform function, APN function.
@article{PDMA_2014_7_a4,
     author = {A. A. Gorodilova},
     title = {Characterization of {APN} functions by means of subfunctions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {15--16},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a4/}
}
TY  - JOUR
AU  - A. A. Gorodilova
TI  - Characterization of APN functions by means of subfunctions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 15
EP  - 16
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a4/
LA  - ru
ID  - PDMA_2014_7_a4
ER  - 
%0 Journal Article
%A A. A. Gorodilova
%T Characterization of APN functions by means of subfunctions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 15-16
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a4/
%G ru
%F PDMA_2014_7_a4
A. A. Gorodilova. Characterization of APN functions by means of subfunctions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 15-16. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a4/

[1] Nyberg K., “Differentially uniform mappings for cryptography”, Eurocrypt 1993, LNCS, 765, 1994, 55–64 | MR | Zbl

[2] Tuzhilin M. E., “Pochti sovershennye nelineinye funktsii”, Prikladnaya diskretnaya matematika, 2009, no. 3, 14–20

[3] Frolova A. A., “Iterativnaya konstruktsiya APN-funktsii”, Prikladnaya diskretnaya matematika. Prilozhenie, 2013, no. 6, 24–25