The recognition of recurrent sequences generated by conservative functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 71-72

Voir la notice de l'article provenant de la source Math-Net.Ru

Let $K$ be a class of functions $f\colon R^n\to R$, where $n=1,2,\dots$. Suppose that $S(K,N)$ is the set of all $N$-prefixes of recurrent sequences generated by functions from $K$. The recognition problem for the property "$x\in S(K,N)$", where $x\in R^N$ and $K$ is the class of conservative functions over the ring $R=\mathbb Z_{p^m}$, is considered. For solving this problem, an algorithm of complexity $\mathrm O(N\log^2N)$ is offered.
Keywords: conservative function, recurrent sequences, circuit of functional elements.
@article{PDMA_2014_7_a30,
     author = {O. E. Sergeeva},
     title = {The recognition of recurrent sequences generated by conservative functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {71--72},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/}
}
TY  - JOUR
AU  - O. E. Sergeeva
TI  - The recognition of recurrent sequences generated by conservative functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 71
EP  - 72
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/
LA  - ru
ID  - PDMA_2014_7_a30
ER  - 
%0 Journal Article
%A O. E. Sergeeva
%T The recognition of recurrent sequences generated by conservative functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 71-72
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/
%G ru
%F PDMA_2014_7_a30
O. E. Sergeeva. The recognition of recurrent sequences generated by conservative functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 71-72. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/