The recognition of recurrent sequences generated by conservative functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 71-72
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $K$ be a class of functions $f\colon R^n\to R$, where $n=1,2,\dots$. Suppose that $S(K,N)$ is the set of all $N$-prefixes of recurrent sequences generated by functions from $K$. The recognition problem for the property "$x\in S(K,N)$", where $x\in R^N$ and $K$ is the class of conservative functions over the ring $R=\mathbb Z_{p^m}$, is considered. For solving this problem, an algorithm of complexity $\mathrm O(N\log^2N)$ is offered.
Keywords:
conservative function, recurrent sequences, circuit of functional elements.
@article{PDMA_2014_7_a30,
author = {O. E. Sergeeva},
title = {The recognition of recurrent sequences generated by conservative functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {71--72},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/}
}
O. E. Sergeeva. The recognition of recurrent sequences generated by conservative functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 71-72. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/
[1] Berlekamp E. R., Algebraic Coding Theory, Mc Craw-Hill, New York, 1968 ; Berlekemp E., Algebraicheskaya teoriya kodirovaniya, Mir, M., 1971 | MR | MR
[2] Massey J. L., “Shift-register synthesis and BCH decoding”, IEEE Trans. Inform. Theory, 15:1, Part 1 (1969), 122–127 | DOI | MR | Zbl
[3] Kurakin V. L., “Algoritm Berlekempa–Messi nad konechnymi kommutativnymi koltsami”, Problemy peredachi inform., 35:2 (1999), 38–50 | MR | Zbl
[4] Anashin V. S., “Ravnomerno raspredelennye posledovatelnosti tselykh $p$-adicheskikh chisel”, Matematicheskie zametki, 55:2 (1994), 3–46 | MR | Zbl
[5] Wegener I., The Complexity of Boolean Functions, John Wiley Sons Ltd, 1987 | MR | Zbl