The recognition of recurrent sequences generated by conservative functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 71-72
Voir la notice de l'article provenant de la source Math-Net.Ru
Let $K$ be a class of functions $f\colon R^n\to R$, where $n=1,2,\dots$. Suppose that $S(K,N)$ is the set of all $N$-prefixes of recurrent sequences generated by functions from $K$. The recognition problem for the property "$x\in S(K,N)$", where $x\in R^N$ and $K$ is the class of conservative functions over the ring $R=\mathbb Z_{p^m}$, is considered. For solving this problem, an algorithm of complexity $\mathrm O(N\log^2N)$ is offered.
Keywords:
conservative function, recurrent sequences, circuit of functional elements.
@article{PDMA_2014_7_a30,
author = {O. E. Sergeeva},
title = {The recognition of recurrent sequences generated by conservative functions},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {71--72},
publisher = {mathdoc},
number = {7},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/}
}
O. E. Sergeeva. The recognition of recurrent sequences generated by conservative functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 71-72. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a30/