The equivalent problem of testing Fermat primes
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 13-14
Voir la notice de l'article provenant de la source Math-Net.Ru
It is shown that the problem of testing Fermat numbers for primality is equivalent to the problem of testing some polynomials over $\mathrm{GF}(2)$ or $\mathrm{GF}(3)$ for irreducibility.
Keywords:
irreducible polynomial, prime numbers, Fermat numbers.
@article{PDMA_2014_7_a3,
author = {Kr. L. Geut and S. S. Titov},
title = {The equivalent problem of testing {Fermat} primes},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {13--14},
publisher = {mathdoc},
number = {7},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a3/}
}
Kr. L. Geut; S. S. Titov. The equivalent problem of testing Fermat primes. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 13-14. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a3/