Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 64-67
Voir la notice de l'article provenant de la source Math-Net.Ru
There are no polynomials with full cycle over the Galois ring. The maximal length of cycle of polynomial mapping over the Galois ring equals $q(q-1)p^{n-2},$ where $q^n$ – cardinality of ring and $p^n$ – its characteristic. In this work, an algorithm is presented for constructing the system of representatives of all maximal length cycles of a polynomial substitution over the Galois ring. Let an elementary operation be the production in the Galois ring, then the complexity of the algorithm equals $\mathrm O(lq^{n-1})$ elementary operations as $n$ tends to infinity, where $l$ is the degree of the polynomial.
Keywords:
nonlinear recurrent sequences, Galois ring.
@article{PDMA_2014_7_a27,
author = {D. M. Ermilov},
title = {Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the {Galois} ring},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {64--67},
publisher = {mathdoc},
number = {7},
year = {2014},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/}
}
TY - JOUR AU - D. M. Ermilov TI - Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2014 SP - 64 EP - 67 IS - 7 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/ LA - ru ID - PDMA_2014_7_a27 ER -
%0 Journal Article %A D. M. Ermilov %T Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring %J Prikladnaya Diskretnaya Matematika. Supplement %D 2014 %P 64-67 %N 7 %I mathdoc %U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/ %G ru %F PDMA_2014_7_a27
D. M. Ermilov. Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 64-67. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/