Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 64-67.

Voir la notice de l'article provenant de la source Math-Net.Ru

There are no polynomials with full cycle over the Galois ring. The maximal length of cycle of polynomial mapping over the Galois ring equals $q(q-1)p^{n-2},$ where $q^n$ – cardinality of ring and $p^n$ – its characteristic. In this work, an algorithm is presented for constructing the system of representatives of all maximal length cycles of a polynomial substitution over the Galois ring. Let an elementary operation be the production in the Galois ring, then the complexity of the algorithm equals $\mathrm O(lq^{n-1})$ elementary operations as $n$ tends to infinity, where $l$ is the degree of the polynomial.
Keywords: nonlinear recurrent sequences, Galois ring.
@article{PDMA_2014_7_a27,
     author = {D. M. Ermilov},
     title = {Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the {Galois} ring},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {64--67},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/}
}
TY  - JOUR
AU  - D. M. Ermilov
TI  - Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 64
EP  - 67
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/
LA  - ru
ID  - PDMA_2014_7_a27
ER  - 
%0 Journal Article
%A D. M. Ermilov
%T Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 64-67
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/
%G ru
%F PDMA_2014_7_a27
D. M. Ermilov. Algorithm for constructing the system of representatives of maximal length cycles of polynomial substitution over the Galois ring. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 64-67. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a27/

[1] Ermilov D. M., Kozlitin O. A., “Tsiklovaya struktura polinomialnogo generatora nad koltsom Galua”, Matematicheskie voprosy kriptografii, 4:1 (2013), 27–57

[2] Ermilov D. M., “O tsiklovoi strukture polinomialnykh preobrazovanii kolets Galua maksimalnogo perioda”, Obozrenie prikl. i promyshl. matem., 20:3 (2013)