Boolean functions generated by the most significant bits of linear recurrent sequences
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 59-60.

Voir la notice de l'article provenant de la source Math-Net.Ru

The class of Boolean functions generated by the most significant bits of linear recurrent sequences over the ring $\mathbb Z_{2^n}$ with a marked characteristic polynomial is considered. For these functions, their degree of nonlinearity is researched. It is proved that the class contains functions which are close to some bent functions.
Keywords: linear recurrent sequences, most significant bit sequences, Boolean functions, degree of nonlinearity.
@article{PDMA_2014_7_a25,
     author = {D. N. Bylkov},
     title = {Boolean functions  generated by the most significant bits of linear recurrent sequences},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {59--60},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a25/}
}
TY  - JOUR
AU  - D. N. Bylkov
TI  - Boolean functions  generated by the most significant bits of linear recurrent sequences
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 59
EP  - 60
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a25/
LA  - ru
ID  - PDMA_2014_7_a25
ER  - 
%0 Journal Article
%A D. N. Bylkov
%T Boolean functions  generated by the most significant bits of linear recurrent sequences
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 59-60
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a25/
%G ru
%F PDMA_2014_7_a25
D. N. Bylkov. Boolean functions  generated by the most significant bits of linear recurrent sequences. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 59-60. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a25/

[1] Bylkov D. N., Kamlovskii O. V., “Parametry bulevykh funktsii, postroennykh s ispolzovaniem starshikh koordinatnykh posledovatelnostei lineinykh rekurrent”, Matem. vopr. kriptogr., 3:4 (2012), 25–53

[2] Kurakin V. L., Kuzmin A. S., Mikhalev A. V., Nechaev A. A., “Linear recurring sequences over rings and modules”, J. Math. Sci. (New York), 76:6 (1995), 2793–2915 | DOI | MR | Zbl