Cryptanalysis of a~Diffie--Hellman's scheme analogue using conjugation and exponentiation on matrix platform
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 56-58.

Voir la notice de l'article provenant de la source Math-Net.Ru

It is proved that the mixed generalized version of the Diffie–Hellman's protocol using matrix platform with the conjugation and exponentiation in a generic case admits computing the shared key in a polynomial time under assumption that the corresponding multiple discrete logarithm problem can be solved in a polynomial time. The computing algorithm uses the original method of linear decomposition and the approach by Menezes and others reducing the computation of the matrix exponent to the multiple discrete logarithm problem. The combination of these two approaches cannot be directly applied because the exponentiation is not automorphism. The proof of the main result is based on the analysis of belonging a monomial matrices to cosets of a matrix group by elementwise permutable subgroups. Thus, a similar question for the symmetric groups has to be studied. Fortunately, a number of results in this sphere is known.
Mots-clés : cryptanalysis, conjugation
Keywords: search problem, Diffie–Hellman's protocol.
@article{PDMA_2014_7_a24,
     author = {V. A. Roman'kov},
     title = {Cryptanalysis of {a~Diffie--Hellman's} scheme analogue using conjugation and exponentiation on  matrix platform},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {56--58},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a24/}
}
TY  - JOUR
AU  - V. A. Roman'kov
TI  - Cryptanalysis of a~Diffie--Hellman's scheme analogue using conjugation and exponentiation on  matrix platform
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 56
EP  - 58
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a24/
LA  - ru
ID  - PDMA_2014_7_a24
ER  - 
%0 Journal Article
%A V. A. Roman'kov
%T Cryptanalysis of a~Diffie--Hellman's scheme analogue using conjugation and exponentiation on  matrix platform
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 56-58
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a24/
%G ru
%F PDMA_2014_7_a24
V. A. Roman'kov. Cryptanalysis of a~Diffie--Hellman's scheme analogue using conjugation and exponentiation on  matrix platform. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 56-58. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a24/

[1] Menezes A. J., Vanstone S., “A note on cyclic groups, finite fields, and the discrete logarithm problem”, Applic. Alg. Eng. Commun. Comput., 3 (1992), 67–74 | DOI | MR | Zbl

[2] Menezes A. J., Wu Y.-H., “The discrete logarithm problem in GL$(n,q)$”, Ars Combinatoria, 47 (1997), 23–32 | MR | Zbl

[3] Ko K. H., Lee S. J., Cheon J. H., et al., “New public-key cryptosystem using braid groups”, Advances in Cryptology – CRYPTO' 2000, LNCS, 1880, 2000, 166–183 | MR | Zbl

[4] Romankov V. A., Algebraicheskaya kriptografiya, OmGU, Omsk, 2013, 135 pp.

[5] Romankov V. A., “Kriptograficheskii analiz nekotorykh skhem shifrovaniya, ispolzuyuschikh avtomorfizmy”, Prikladnaya diskretnaya matematika, 2013, no. 3, 36–51

[6] Kahrobaei D., Khan B., “A non-commutative generalization of ElGamal key exchange using polycyclic groups”, Global Telecommun. Conf., GLOBECOM' 06, IEEE, 2006, 1–5