On probabilities of $r$-round differences of a~Markov XSL block cipher with a~reducible linear transformation
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 52-54.

Voir la notice de l'article provenant de la source Math-Net.Ru

Round functions in XSL block ciphers consist of three layers. The first is a key addition layer; the second is a nonlinear s-box layer; the third is a linear layer. Here, for a Markov XSL block cipher with a reducible linear transformation, instead of “classical” $r$-round differential characteristic used in differential technique, a $r$-round differential characteristic defined by the sequence of invariant subspace cosets of the linear transformation is considered.
Keywords: Markov cipher, reducible linear transformation, differential characteristic.
Mots-clés : invariant set
@article{PDMA_2014_7_a22,
     author = {M. A. Pudovkina},
     title = {On probabilities of $r$-round differences of {a~Markov} {XSL} block cipher with a~reducible linear transformation},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {52--54},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a22/}
}
TY  - JOUR
AU  - M. A. Pudovkina
TI  - On probabilities of $r$-round differences of a~Markov XSL block cipher with a~reducible linear transformation
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 52
EP  - 54
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a22/
LA  - ru
ID  - PDMA_2014_7_a22
ER  - 
%0 Journal Article
%A M. A. Pudovkina
%T On probabilities of $r$-round differences of a~Markov XSL block cipher with a~reducible linear transformation
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 52-54
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a22/
%G ru
%F PDMA_2014_7_a22
M. A. Pudovkina. On probabilities of $r$-round differences of a~Markov XSL block cipher with a~reducible linear transformation. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 52-54. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a22/

[1] Lai X., Massey J. L., Murphy S., “Markov ciphers and differential cryptanalysis”, EUROCRYPT' 1991, LNCS, 547, 1991, 17–38 | MR | Zbl

[2] Standaert F. X., Piret G., Rouvroy G., et al., “ICEBERG: an involutional cipher efficient for block encryption in reconfigurable hardware”, FSE' 2004, LNCS, 3017, 2004, 279–299 | Zbl

[3] Sun Y., Wang M., Jiang S., Jiang Q., “Differential cryptanalysis of reduced-round ICEBERG”, AFRICACRYPT' 2012, LNCS, 7374, 2012, 155–171 | MR | Zbl