Asymptotic properties of the set of solutions for the distorted systems of equations
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 48-49.

Voir la notice de l'article provenant de la source Math-Net.Ru

Two homogeneous systems of equations with functions of $k$-valued logic are considered. The functions in the second system are obtained by independent random distortions of the functions in the first one. It is proposed that the number of equations and variables in these systems increase. For the sets of their solutions, some conditions on probabilistic properties of distortions are formulated. Among them are the conditions under which (1) the probability of equality of these sets aspires to 1; (2) the probability of their intersection aspires to 1; and (3) the number of common solutions in them has a binomial limit distribution.
Keywords: system of equations, functions of $k$-valued logic, distorted functions.
@article{PDMA_2014_7_a19,
     author = {A. V. Volgin},
     title = {Asymptotic properties of the set of solutions for the distorted systems of equations},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {48--49},
     publisher = {mathdoc},
     number = {7},
     year = {2014},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a19/}
}
TY  - JOUR
AU  - A. V. Volgin
TI  - Asymptotic properties of the set of solutions for the distorted systems of equations
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2014
SP  - 48
EP  - 49
IS  - 7
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a19/
LA  - ru
ID  - PDMA_2014_7_a19
ER  - 
%0 Journal Article
%A A. V. Volgin
%T Asymptotic properties of the set of solutions for the distorted systems of equations
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2014
%P 48-49
%N 7
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2014_7_a19/
%G ru
%F PDMA_2014_7_a19
A. V. Volgin. Asymptotic properties of the set of solutions for the distorted systems of equations. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 48-49. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a19/

[1] Mikhailov V. G., “Otsenka tochnosti puassonovskoi approksimatsii dlya chisla pustykh yacheek v ravnoveroyatnoi skheme razmescheniya chastits komplektami i eë primeneniya”, Trudy Matem. in-ta im. V. A. Steklova RAN, 282, 2013, 165–180 | Zbl