About primitiveness of self-decimated generator's mixing matrices
Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 42-43
Cet article a éte moissonné depuis la source Math-Net.Ru
Primitiveness conditions are obtained for mixing matrix of a $(\delta,\tau)$-self-decimated generator and its generalization constructed on the basis of non-linear substitutions of a vector space over a finite field. Some upper estimates for exponents of mixing matrices are given.
Keywords:
self-decimated generator, primitive graph, exponent of matrix.
Mots-clés : primitive matrix
Mots-clés : primitive matrix
@article{PDMA_2014_7_a17,
author = {Y. E. Avezova and V. M. Fomichev},
title = {About primitiveness of self-decimated generator's mixing matrices},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {42--43},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a17/}
}
Y. E. Avezova; V. M. Fomichev. About primitiveness of self-decimated generator's mixing matrices. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 42-43. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a17/
[1] Rueppel R. A., “When shift registers clock themselves”, Advances in Cryptology – Eurocrypt' 87, LNCS, 304, 1988, 53–64 | Zbl
[2] Fomichev V. M., Metody diskretnoi matematiki v kriptologii, Dialog-MIFI, M., 2010, 424 pp.
[3] Fomichev V. M., “Otsenki eksponentov primitivnykh grafov”, Prikladnaya diskretnaya matematika, 2011, no. 2(12), 101–112
[4] Sachkov V. N., Tarakanov V. E., Kombinatorika neotritsatelnykh matrits, TVP, M., 2000, 448 pp. | MR | Zbl
[5] Alfonsin J. R., The Diophantine Frobenius Problem, Oxford University Press, 2005 | MR | Zbl