Keywords: estimate for the variation distance of the compound Poisson approximation, compound Poisson distribution, Stein method.
@article{PDMA_2014_7_a10,
author = {A. A. Minakov},
title = {Compound {Poisson} approximation for the distribution of the number of monotone tuples in random sequence},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {29--30},
year = {2014},
number = {7},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2014_7_a10/}
}
TY - JOUR AU - A. A. Minakov TI - Compound Poisson approximation for the distribution of the number of monotone tuples in random sequence JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2014 SP - 29 EP - 30 IS - 7 UR - http://geodesic.mathdoc.fr/item/PDMA_2014_7_a10/ LA - ru ID - PDMA_2014_7_a10 ER -
A. A. Minakov. Compound Poisson approximation for the distribution of the number of monotone tuples in random sequence. Prikladnaya Diskretnaya Matematika. Supplement, no. 7 (2014), pp. 29-30. http://geodesic.mathdoc.fr/item/PDMA_2014_7_a10/
[1] Wolfowitz J., “Asymptotics distribution of runs up and down”, Ann. Math. Statist., 15 (1944), 163–172 | DOI | MR | Zbl
[2] David F. N., Barton D. E., Combinatorial Chance, Hafner Publishing Co., New York, 1962 | MR
[3] Pittel B. G., “Limiting behavior of a process of runs”, Ann. Probab., 9:1 (1981), 119–129 | DOI | MR | Zbl
[4] Chryssaphinou O., Papastavridis S., Vaggelatou E., “Poisson approximation for the non-overlapping appearances of several words in Markov chains”, Combinatorics, Probability and Computing, 10:4 (2001), 293–308 | DOI | MR | Zbl
[5] Mezhennaya N. M., “Mnogomernaya normalnaya teorema dlya chisla monotonnykh serii zadannoi dliny v ravnoveroyatnoi sluchainoi posledovatelnosti”, Obozrenie prikladnoi i promyshlennoi matematiki, 14:3 (2007), 503–505
[6] Roos V., “Stein's method for compound Poisson approximation: The local approach”, Ann. Appl. Probab., 4:4 (1994), 1177–1187 | DOI | MR | Zbl
[7] Barbour A. D., Chen L. H. Y., Loh W.-L., “Compound Poisson approximation for nonnegative random variables via Stein's method”, Ann. Appl. Probab., 20:4 (1992), 1843–1866 | DOI | MR | Zbl