Algebraic immunity upper bound for some Dillon's bent functions
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 19-20.

Voir la notice de l'article provenant de la source Math-Net.Ru

An upper bound for the algebraic immunity of some Dillon's bent functions is obtained. It is shown that for $k = 2, 3,\ldots, 8$ the degree for Tu and Deng's function in $2^k$ variables used in the Dillon's method for constructing bent functions of the maximum algebraic immunity equals $k-1$.
Keywords: Boolean function, nonlinearity, bent function, algebraic immunity.
@article{PDMA_2013_6_a9,
     author = {S. Y. Filyuzin},
     title = {Algebraic immunity upper bound for some {Dillon's} bent functions},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {19--20},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a9/}
}
TY  - JOUR
AU  - S. Y. Filyuzin
TI  - Algebraic immunity upper bound for some Dillon's bent functions
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 19
EP  - 20
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a9/
LA  - ru
ID  - PDMA_2013_6_a9
ER  - 
%0 Journal Article
%A S. Y. Filyuzin
%T Algebraic immunity upper bound for some Dillon's bent functions
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 19-20
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a9/
%G ru
%F PDMA_2013_6_a9
S. Y. Filyuzin. Algebraic immunity upper bound for some Dillon's bent functions. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 19-20. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a9/

[1] Dillon J. F., Elementary Hadamard difference sets, Ph. D. Thesis, Univ. of Maryland, 1974 | MR

[2] Tu Z., Deng Y., “A conjecture about binary strings and its applications on constructing Boolean functions with optimal algebraic immunity”, Designs, Codes and Cryptography, 60:1 (2011), 1–14 | DOI | MR | Zbl