An affine property of Boolean functions on subspaces and their shifts
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 15-16.

Voir la notice de l'article provenant de la source Math-Net.Ru

Let a Boolean function in $n$ variables be affine on an affine subspace of dimension $\lceil n/2 \rceil$ if and only if $f$ is affine on any its shift. It is proved that algebraic degree of $f$ can be more than $2$ only if there is no affine subspace of dimension $\lceil n/2 \rceil$ that $f$ is affine on it.
Keywords: Boolean functions, bent functions, quadratic functions.
@article{PDMA_2013_6_a6,
     author = {N. A. Kolomeec},
     title = {An affine property of {Boolean} functions on subspaces and their shifts},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {15--16},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a6/}
}
TY  - JOUR
AU  - N. A. Kolomeec
TI  - An affine property of Boolean functions on subspaces and their shifts
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 15
EP  - 16
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a6/
LA  - ru
ID  - PDMA_2013_6_a6
ER  - 
%0 Journal Article
%A N. A. Kolomeec
%T An affine property of Boolean functions on subspaces and their shifts
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 15-16
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a6/
%G ru
%F PDMA_2013_6_a6
N. A. Kolomeec. An affine property of Boolean functions on subspaces and their shifts. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 15-16. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a6/

[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl

[2] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, 2011

[3] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20