An affine property of Boolean functions on subspaces and their shifts
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 15-16
Cet article a éte moissonné depuis la source Math-Net.Ru
Let a Boolean function in $n$ variables be affine on an affine subspace of dimension $\lceil n/2 \rceil$ if and only if $f$ is affine on any its shift. It is proved that algebraic degree of $f$ can be more than $2$ only if there is no affine subspace of dimension $\lceil n/2 \rceil$ that $f$ is affine on it.
Keywords:
Boolean functions, bent functions, quadratic functions.
@article{PDMA_2013_6_a6,
author = {N. A. Kolomeec},
title = {An affine property of {Boolean} functions on subspaces and their shifts},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {15--16},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a6/}
}
N. A. Kolomeec. An affine property of Boolean functions on subspaces and their shifts. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 15-16. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a6/
[1] Rothaus O., “On bent functions”, J. Combin. Theory. Ser. A, 20:3 (1976), 300–305 | DOI | MR | Zbl
[2] Tokareva N. N., Nelineinye bulevy funktsii: bent-funktsii i ikh obobscheniya, LAP LAMBERT Academic Publishing, Saarbrucken, 2011
[3] Kolomeets N. A., Pavlov A. V., “Svoistva bent-funktsii, nakhodyaschikhsya na minimalnom rasstoyanii drug ot druga”, Prikladnaya diskretnaya matematika, 2009, no. 4, 5–20