Exact algorithm for solving special case of discrete Weber problem
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 136-137.

Voir la notice de l'article provenant de la source Math-Net.Ru

An algorithm reasonably solving Weber problem for $n$-sequentially connected chain and finite set of points of location is described. The algorithm is compared with an integer linear programming algorithm realized in IBM ILOG CPLEX.
Keywords: Weber problem, n-sequentially connected chain, dynamic programming, exact algorithm
Mots-clés : quasi-polynomial algorithm.
@article{PDMA_2013_6_a59,
     author = {R. E. Shangin},
     title = {Exact algorithm for solving special case of discrete {Weber} problem},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {136--137},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a59/}
}
TY  - JOUR
AU  - R. E. Shangin
TI  - Exact algorithm for solving special case of discrete Weber problem
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 136
EP  - 137
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a59/
LA  - ru
ID  - PDMA_2013_6_a59
ER  - 
%0 Journal Article
%A R. E. Shangin
%T Exact algorithm for solving special case of discrete Weber problem
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 136-137
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a59/
%G ru
%F PDMA_2013_6_a59
R. E. Shangin. Exact algorithm for solving special case of discrete Weber problem. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 136-137. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a59/

[1] Panyukov A. V., Pelzwerger B. V., “Polynomial algorithms to finite Veber problem for a tree network”, J. Comput. Appl. Math., 35 (1991), 291–296 | DOI | MR | Zbl

[2] Shangin R. E., “O nekotorykh svoistvakh $n$-posledovatelnosvyaznoi tsepi”, Vestnik YuUrGU. Ser. Vychislitelnaya matematika i informatika, 2:1 (2013), 106–113 | Zbl

[3] Panyukov A. V., Modeli i metody resheniya zadach postroeniya i identifikatsii geometricheskogo razmescheniya, dis. ... dokt. fiz.-mat. nauk, M., 1999

[4] Zabudskii G. G., Filimonov D. V., “Reshenie diskretnoi minimaksnoi zadachi razmescheniya na seti”, Izv. vuzov. Matematika, 2004, no. 5, 33–36

[5] Trubin V. A., “Effektivnyi algoritm dlya zadachi Vebera s pryamougolnoi metrikoi”, Kibernetika, 1978, no. 6, 67–70 | MR