Voir la notice de l'article provenant de la source Math-Net.Ru
@article{PDMA_2013_6_a59, author = {R. E. Shangin}, title = {Exact algorithm for solving special case of discrete {Weber} problem}, journal = {Prikladnaya Diskretnaya Matematika. Supplement}, pages = {136--137}, publisher = {mathdoc}, number = {6}, year = {2013}, language = {ru}, url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a59/} }
R. E. Shangin. Exact algorithm for solving special case of discrete Weber problem. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 136-137. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a59/
[1] Panyukov A. V., Pelzwerger B. V., “Polynomial algorithms to finite Veber problem for a tree network”, J. Comput. Appl. Math., 35 (1991), 291–296 | DOI | MR | Zbl
[2] Shangin R. E., “O nekotorykh svoistvakh $n$-posledovatelnosvyaznoi tsepi”, Vestnik YuUrGU. Ser. Vychislitelnaya matematika i informatika, 2:1 (2013), 106–113 | Zbl
[3] Panyukov A. V., Modeli i metody resheniya zadach postroeniya i identifikatsii geometricheskogo razmescheniya, dis. ... dokt. fiz.-mat. nauk, M., 1999
[4] Zabudskii G. G., Filimonov D. V., “Reshenie diskretnoi minimaksnoi zadachi razmescheniya na seti”, Izv. vuzov. Matematika, 2004, no. 5, 33–36
[5] Trubin V. A., “Effektivnyi algoritm dlya zadachi Vebera s pryamougolnoi metrikoi”, Kibernetika, 1978, no. 6, 67–70 | MR