On solving big systems of congruences
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 116-118
Cet article a éte moissonné depuis la source Math-Net.Ru
Let $S$ be a finite set of positive integers such that almost all its elements are pairwise coprime. An algorithm is presented for finding all elements $s\in S$, such that $(s,s')>1$ for an element $s'\in S$, $s'\ne s$. The algorithm allows to reduce any system of polynomial congruences to a number of systems with coprime moduli.
Keywords:
coprime base, gcd, merge gcd, gcd tree.
@article{PDMA_2013_6_a51,
author = {K. D. Zhukov and A. S. Rybakov},
title = {On solving big systems of congruences},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {116--118},
year = {2013},
number = {6},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a51/}
}
K. D. Zhukov; A. S. Rybakov. On solving big systems of congruences. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 116-118. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a51/
[1] Bach E., Miller G., Shallit J., “Factor refinement”, J. Algorithms, 1993, no. 15, 199–222 | DOI | MR | Zbl
[2] Smedley T. J., “Detecting algebraic dependencies between unnested radicals: extended abstract”, Proc. Intern. Symp. on Symbolic and Algebraic Computation (Tokyo, Japan, 1990), 292–293
[3] Luneburg H., “On a little but useful algorithm”, AAECC'85, LNCS, 229, 1986, 296–301 | MR | Zbl
[4] Bernstein D. J., “Factoring into coprimes in essentially linear time”, J. Algorithms, 54:1 (2005), 1–30 | DOI | MR | Zbl
[5] Bernstein D. J., Scaled reminder trees, http://cr.yp.to/papers.html#scaledmod