On polyquadratic extension of binary fields
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 12-13.

Voir la notice de l'article provenant de la source Math-Net.Ru

The paper is devoted to generation of irreducible polynomials of degree $2^n$ by using polyquadratic field extension of GF$(2)$. Full binary tree of these polynomials is constructed. Some properties of such extension are formulated.
Keywords: irreducible polynomial, the trace of polynomial.
Mots-clés : polyquadratic extension
@article{PDMA_2013_6_a4,
     author = {Kr. L. Geut and S. S. Titov},
     title = {On polyquadratic extension of binary fields},
     journal = {Prikladnaya Diskretnaya Matematika. Supplement},
     pages = {12--13},
     publisher = {mathdoc},
     number = {6},
     year = {2013},
     language = {ru},
     url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a4/}
}
TY  - JOUR
AU  - Kr. L. Geut
AU  - S. S. Titov
TI  - On polyquadratic extension of binary fields
JO  - Prikladnaya Diskretnaya Matematika. Supplement
PY  - 2013
SP  - 12
EP  - 13
IS  - 6
PB  - mathdoc
UR  - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a4/
LA  - ru
ID  - PDMA_2013_6_a4
ER  - 
%0 Journal Article
%A Kr. L. Geut
%A S. S. Titov
%T On polyquadratic extension of binary fields
%J Prikladnaya Diskretnaya Matematika. Supplement
%D 2013
%P 12-13
%N 6
%I mathdoc
%U http://geodesic.mathdoc.fr/item/PDMA_2013_6_a4/
%G ru
%F PDMA_2013_6_a4
Kr. L. Geut; S. S. Titov. On polyquadratic extension of binary fields. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 12-13. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a4/

[1] Informatsionnye tekhnologii i bezopasnost algoritmy razdeleniya sekreta, Predvaritelnyi gosudarstvennyi standart respubliki Belarus STB P 34.101.44., Gosstandart, Minsk, 2011

[2] Glusko Kr. L., Titov S. S., “Arifmeticheskii algoritm resheniya kvadratnykh uravnenii v konechnykh polyakh kharakteristiki dva”, Doklady TUSURa, 2012, no. 1(25), Ch. 2, 148–152

[3] Bolotov A. A., Gashkov S. B., Frolov A. B., Elementarnoe vvedenie v ellipticheskuyu kriptografiyu: algebraicheskie i algoritmicheskie osnovy, KomKniga, M., 2006

[4] Bolotov A. A., Gashkov S. B., Frolov A. B., Elementarnoe vvedenie v ellipticheskuyu kriptografiyu: Protokoly kriptografii na ellipticheskikh krivykh, KomKniga, M., 2006

[5] Lidl R., Niderraiter G., Konechnye polya, Mir, M., 1988 | Zbl

[6] Geut Kr. L., Titov S. S., “O svoistvakh polikvadratichnykh rasshirenii binarnykh polei”, Problemy teoreticheskoi i prikladnoi matematiki, Trudy 44-i Vseros. molodezhnoi konf., UrO RAN, Ekaterinburg, 2013, 17–19