Functional graph trees for circulants with linear Boolean functions at the vertices
Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 80-81
Voir la notice de l'article provenant de la source Math-Net.Ru
The functional graph of a discrete dynamic system being a model of regulatory gene network circuit is defined as the graph of the transformation $A_{f,2}:F_{2}^{n}\rightarrow F_{2}^{n}$ where $A_{f,2}(v_0,v_1,\ldots,v_{n-1}) = (u_0,u_1,\ldots,u_{n-1})$, $u_i=v_{i-1}+v_i+v_{i+1}$, $i=0,1,\ldots,n-1$, $v_{-1}=v_{n-1}$, $v_n=v_0$. The structure of this graph is completely described.
Keywords:
discrete dynamical system, gene network, regulatory circuit, functional graph.
Mots-clés : circulant
Mots-clés : circulant
@article{PDMA_2013_6_a37,
author = {A. S. Kornienko},
title = {Functional graph trees for circulants with linear {Boolean} functions at the vertices},
journal = {Prikladnaya Diskretnaya Matematika. Supplement},
pages = {80--81},
publisher = {mathdoc},
number = {6},
year = {2013},
language = {ru},
url = {http://geodesic.mathdoc.fr/item/PDMA_2013_6_a37/}
}
TY - JOUR AU - A. S. Kornienko TI - Functional graph trees for circulants with linear Boolean functions at the vertices JO - Prikladnaya Diskretnaya Matematika. Supplement PY - 2013 SP - 80 EP - 81 IS - 6 PB - mathdoc UR - http://geodesic.mathdoc.fr/item/PDMA_2013_6_a37/ LA - ru ID - PDMA_2013_6_a37 ER -
A. S. Kornienko. Functional graph trees for circulants with linear Boolean functions at the vertices. Prikladnaya Diskretnaya Matematika. Supplement, no. 6 (2013), pp. 80-81. http://geodesic.mathdoc.fr/item/PDMA_2013_6_a37/